CHEMISTRY VOL. 2 W/MASTERING CHEM. >IC<
19th Edition
ISBN: 9781323849996
Author: Brown
Publisher: Pearson Custom Publishing
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16, Problem 82E
Pyridinium bromide (C5H5NHBr) is a strong electrolyte that dissociates completely into C5H5NH+ and BR-. An aqueous solution of pyridinium bromide has a PH of 2.95.
- Write out the reaction that leads to this acidic PH.
- Using Appendix D, calculate the Ka for pyridinium bromide.
- A solution of pyridinium bromide has a PH of 2.95. What is the concentration of the pyridinium caation at equilibrium, in units of molarity?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Pyridinium bromide 1C5H5NHBr2 is a strong electrolyte that dissociates completely into C5H5NH+ and Br-. An aqueous solution of pyridinium bromide has a pH of 2.95. A solution of pyridinium bromide has a pH of 2.95. What is the concentration of the pyridinium cation at equilibrium, in units of molarity?
In industrial environments, benzoic acid, C6H5COOH, is widely used to produce a range
of products such as perfumes, dyes, topical drugs, and insect repellents.
C6H5COOH + H2O C6H5COO + H3O+
If this solution above has an initial concentration of C6H5COOH was 0.13 M, what is
the pH of the solution? K, for benzoic acis is 6.5 x 10-5.
A solution is prepared that is initially 0.22 M in methylamine (CH3NH2), a weak base, and 0.31 M in
methylammonium chloride (CH3NH3Cl). Complete the reaction table below, so that you could use it to
calculate the pH of this solution.
Use y to stand for the unknown change in [OH-]. You can leave out the M symbol for molarity.
Chapter 16 Solutions
CHEMISTRY VOL. 2 W/MASTERING CHEM. >IC<
Ch. 16.2 - Practice Exercise 1 Consider the following...Ch. 16.2 - Prob. 16.1.2PECh. 16.2 - Prob. 16.2.1PECh. 16.2 - Practice Exercise 2 When lithium oxide (Li2O) is...Ch. 16.2 - Based on information in Figure 16.4, place the...Ch. 16.2 - Practice Exercise 2 For each reaction, use Figure...Ch. 16.3 - Practice Exercise 1 In a certain acidic solution...Ch. 16.3 - Practice Exercise 2 Indicate whether solutions...Ch. 16.3 - Prob. 16.5.1PECh. 16.3 - Prob. 16.5.2PE
Ch. 16.4 - Practice Exercise 1 A solution at 250C has [OH-] =...Ch. 16.4 - Practice Exercise 2 In a sample of lemon juice,...Ch. 16.4 - Practice Exercise 1 A solution at 25° C has pOH =...Ch. 16.4 - Prob. 16.7.2PECh. 16.5 - Practice Exercise 1 Order the following three...Ch. 16.5 - Prob. 16.8.2PECh. 16.5 - Practice Exercise 1 Order the following three...Ch. 16.5 - Prob. 16.9.2PECh. 16.6 - Prob. 16.10.1PECh. 16.6 - Practice Exercise 2 Niacin, one of the B vitamins,...Ch. 16.6 - Prob. 16.11.1PECh. 16.6 - Practice Exercise 2 A 0.020 M solution of niacin...Ch. 16.6 - Practice Exercise 1 What is the pH of a 0.40 M...Ch. 16.6 - Practice Exercise 2 The Ka for niacin (Sample...Ch. 16.6 - Prob. 16.13.1PECh. 16.6 - Prob. 16.13.2PECh. 16.6 - Practice Exercise 1 What is the pH of a 0.28 M...Ch. 16.6 - Practice Exercise 2 Calculate the pH of a 0.020 M...Ch. 16.7 - Prob. 16.15.1PECh. 16.7 - Practice Exercise 2 Which of the following...Ch. 16.7 - Prob. 16.16.1PECh. 16.7 - Practice Exercise 2 What is the morality of an...Ch. 16.8 - Practice Exercise 1 By using information from...Ch. 16.8 - Practice Exercise 2 Based on information in...Ch. 16.9 - Prob. 16.18.1PECh. 16.9 - Prob. 16.18.2PECh. 16.9 - Practice Exercise 1 How many of the following...Ch. 16.9 - Practice Exercise 2 Predict whether the...Ch. 16.10 - Prob. 16.20.1PECh. 16.10 - In each pair, choose the compound that gives the...Ch. 16 - Prob. 1DECh. 16 - a. Identify the Br ted-Lowry acid and base in the...Ch. 16 - Prob. 2ECh. 16 - Prob. 3ECh. 16 - Prob. 4ECh. 16 - 16.5 The following diagrams represent aqueous...Ch. 16 - Prob. 6ECh. 16 - Which of these statements about how the percent...Ch. 16 - 16.8 Each of the three molecules shown here...Ch. 16 - Prob. 9ECh. 16 - Which of the following diagrams best represent an...Ch. 16 - Prob. 11ECh. 16 - Prob. 12ECh. 16 - Prob. 13ECh. 16 - 16.14 Which of the following statements is...Ch. 16 - Prob. 15ECh. 16 - Prob. 16ECh. 16 - Identify the Bronsted-Lowry acid and the...Ch. 16 - Prob. 18ECh. 16 - Prob. 19ECh. 16 - Prob. 20ECh. 16 - Prob. 21ECh. 16 - Prob. 22ECh. 16 - Prob. 23ECh. 16 - Prob. 24ECh. 16 - Prob. 25ECh. 16 - Prob. 26ECh. 16 - Prob. 27ECh. 16 - Prob. 28ECh. 16 - 16.29 Calcualte [H +] for each of the following...Ch. 16 - Prob. 30ECh. 16 - 16.31 At the freezing point of water (0 o C), K10...Ch. 16 - Prob. 32ECh. 16 - Prob. 33ECh. 16 - Prob. 34ECh. 16 - 16.35 Complete the following table by calculating...Ch. 16 - Prob. 36ECh. 16 - Prob. 37ECh. 16 - 16.38 Carbon dioxide in the atmosphere dissolves...Ch. 16 - Prob. 39ECh. 16 - Prob. 40ECh. 16 - Prob. 41ECh. 16 - Prob. 42ECh. 16 - Prob. 43ECh. 16 - Prob. 44ECh. 16 - Prob. 45ECh. 16 - Prob. 46ECh. 16 - Prob. 47ECh. 16 - Prob. 48ECh. 16 - Prob. 49ECh. 16 - write the chemical equation and the Ka expression...Ch. 16 - Prob. 51ECh. 16 - Prob. 52ECh. 16 - Prob. 53ECh. 16 - Prob. 54ECh. 16 - Prob. 55ECh. 16 - Prob. 56ECh. 16 - Prob. 57ECh. 16 - Prob. 58ECh. 16 - Calculate the pH of each of the following solution...Ch. 16 - Prob. 60ECh. 16 - Prob. 61ECh. 16 - Prob. 62ECh. 16 - Calculate the percent ionization of hydrazoic acid...Ch. 16 - 16.64 Calculate the percent ionization of...Ch. 16 - Prob. 65ECh. 16 - Prob. 66ECh. 16 - Prob. 67ECh. 16 - 16.68 The hypochlorite ion, CIO- , acts as a weak...Ch. 16 - Prob. 69ECh. 16 - Prob. 70ECh. 16 - Calculate the molar concentration of OH- in a...Ch. 16 - 16.72 Calculate the molar concentration of OH- in...Ch. 16 - Prob. 73ECh. 16 - Prob. 74ECh. 16 - Prob. 75ECh. 16 - Prob. 76ECh. 16 - a. Given that Ka for acetic acid is 1.8 10-5 and...Ch. 16 - 16.78
a. Given that Kb for ammonia is 1.8 X 10 -5...Ch. 16 - Prob. 79ECh. 16 - Prob. 80ECh. 16 - Prob. 81ECh. 16 - Pyridinium bromide (C5H5NHBr) is a strong...Ch. 16 - Prob. 83ECh. 16 - Prob. 84ECh. 16 - Prob. 85ECh. 16 - 16.86 An unknown salt is either KBr, NH4 C1, KCN,...Ch. 16 - Prob. 87ECh. 16 - Prob. 88ECh. 16 - 16.89 Based on their compositions and structures...Ch. 16 - Prob. 90ECh. 16 - 16.91 Indicate whether each of the following...Ch. 16 - Prob. 92ECh. 16 - Prob. 93ECh. 16 - Prob. 94ECh. 16 - Prob. 95ECh. 16 - Prob. 96ECh. 16 - Prob. 97ECh. 16 - Prob. 98ECh. 16 - Prob. 99AECh. 16 - Prob. 100AECh. 16 - Prob. 101AECh. 16 - Prob. 102AECh. 16 - Prob. 103AECh. 16 - Prob. 104AECh. 16 - Benzoic acid (C6H5COOH) and aniline (C6H5NH2) are...Ch. 16 - Prob. 106AECh. 16 - Prob. 107AECh. 16 - Prob. 108AECh. 16 - Butyric acid is responsible for the foul smell of...Ch. 16 - Prob. 110AECh. 16 - Prob. 111AECh. 16 - Prob. 112AECh. 16 - 1S.113 Many moderately large organic molecules...Ch. 16 - Prob. 114AECh. 16 - Prob. 115AECh. 16 - Prob. 116IECh. 16 - Prob. 117IECh. 16 - Prob. 118IECh. 16 - Prob. 119IECh. 16 - 16.120 At 50 oC, the ion-product constant for H2...Ch. 16 - Prob. 121IECh. 16 - Prob. 122IECh. 16 - Prob. 123IECh. 16 - Prob. 124IECh. 16 - Prob. 125IECh. 16 - Prob. 126IE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The base ethylamine (CH3CH2NH2) has a Kb of. A closely related base, ethanolamine(HOCH2CH2NH2), has a Kb of 3.2105. (a) Which of the two bases is stronger? (b) Calculate the pH of a 0.10M solution of the strong base?arrow_forwardTwo strategies are also followed when solving for the pH of a base in water. What is the strategy for calculating the pH of a strong base in water? List the strong bases mentioned in the text that should be committed to memory. Why is calculating the pH of Ca(OH)2 solutions a little more difficult than calculating the pH of NaOH solutions? Most bases are weak bases. The presence of what element most commonly results in basic properties for an organic compound? What is present on this element in compounds that allows it to accept a proton? Table 13-3 and Appendix 5 of the text list Kb values for some weak bases. What strategy is used to solve for the pH of a weak base in water? What assumptions are made when solving for the pH of weak base solutions? If the 5% rule fails, how do you calculate the pH of a weak base in water?arrow_forwardConsider the following ions: NH4+, CO32, Br, S2, and ClO4. (a) Which of these ions in water gives an acidic solution and which gives a basic solution? (b) Which of these anions will have no effect on the pH of an aqueous solution? (c) Which ion is the strong base? (d) Write a chemical equation for the reaction of each basic anion with water.arrow_forward
- A solution of acetic acid, HC2H3O2, on a laboratory shelf was of undetermined concentration. If the pH of the solution was found to be 2.57, what was the concentration of the acetic acid? The Ka of acetic acid is 1.7 105.arrow_forwardStrong Acids, Weak Acids, and pH Two 0.10-mol samples of the hypothetical monoprotic acids HA(aq) and HB(aq) are used to prepare 1.0-L stock solutions of each acid. a Write the chemical reactions for these acids in water. What are the concentrations of the two acid solutions? b One of these acids is a strong acid, and one is weak. What could you measure that would tell you which acid was strong and which was weak? c Say that the HA(aq) solution has a pH of 3.7. Is this the stronger of the two acids? How did you arrive at your answer? d What is the concentration of A(aq) in the HA solution described in part c? e If HB(aq) is a strong acid, what is the hydronium-ion concentration? f In the solution of HB(aq), which of the following would you expect to be in the greatest concentration: H3O+(aq), B(aq), HB(aq), or OH(aq)? How did you decide? g In the solution of HA(aq), which of the following would you expect to be in the greatest concentration: H3O+(aq), A+(aq), HA(aq), or OH(aq)? How did you decide? h Say you add 1.0 L of pure water to a solution of HB. Would this water addition make the solution more acidic, make it less acidic, or not change the acidity of the original solution? Be sure to fully justify your answer. i You prepare a 1.0-L solution of HA. You then take a 200-mL sample of this solution and place it into a separate container. Would this 200 mL sample be more acidic, be less acidic, or have the same acidity as the original 1.0-L solution of HA(aq)? Be sure to support your answer.arrow_forwardExplain why the pH does not change significantly when a small amount of an acid or a base is added to a solution that contains equal amounts of the acid H3PO4 and a salt of its conjugate base NaH2PO4.arrow_forward
- What is the pH of a solution obtained by mixing 235 mL of NaOH with a pH of 11.57 and 316 mL of Sr(OH)2 with a pH of 12.09? Assume that volumes are additive.arrow_forwardA chemist wanted to determine the concentration of a solution of lactic acid, HC3H5O3. She found that the pH of the solution was 2.60. What was the concentration of the solution? The Kd of lactic acid is 1.4 104.arrow_forwardChloroacetic acid, HC2H2ClO2, has a greater acid strength than acetic acid, because the electronegative chlorine atom pulls electrons away from the OH bond and thus weakens it. Calculate the hydronium-ion concentration and the pH of a 0.0020 M solution of chloroacetic acid, Ka is 1.3 103.arrow_forward
- Ionization of the first proton from H2SO4 is complete (H2SO4 is a strong acid); the acid-ionization constant for the second proton is 1.1 102. a What would be the approximate hydronium-ion concentration in 0.100 M H2SO4 if ionization of the second proton were ignored? b The ionization of the second proton must be considered for a more exact answer, however. Calculate the hydronium-ion concentration in 0.100 M H2SO4, accounting for the ionization of both protons.arrow_forwardWrite an equation for each of the following buffering actions. a. the response of a HPO42/PO43 buffer to the addition of OH ions b. the response of a HF/F buffer to the addition of OH ions c. the response of a HCN/CN buffer to the addition of H3O+ ions d. the response of a H3PO4/H2PO4 buffer to the addition of H3O+ ionsarrow_forwardCalculate the maximum concentration of Mg2+ (molarity) that can exist in a solution of pH 12.00.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Ocean Chemistry; Author: Beverly Owens;https://www.youtube.com/watch?v=IDQzklIr57Q;License: Standard YouTube License, CC-BY