From the given salt solution systems, the X − ion that has the weakest conjugate acidand the decreasing order of the basic strength of the given anions, is to be determined. Concept introduction: A salt is a strong electrolyte, which dissociates completely when added to water. When a salt contains an anion that comes from a weak acid then the anion recombines with water to produce a weak acid and hydroxide ions, and forms a basic solution. The cation, if it comes from a strong base, does not recombine and is present in the solution as a free ion without having any effect on the pH of the solution. The reaction of the salt ( BA ) which takes place is: A − ( aq ) + H 2 O ( l ) ⇌ HA ( aq ) + OH − ( aq ) Here, A − comes from the weak acid HA and B + comes from strong base BOH . The pH of this solution is determined by the [ OH − ] The relationship between K b , K a and K w gives the quantitative basis of the reciprocal relationship between the strength of an acid and its conjugate base or vice-versa. K a × K b = K w …… (1) K b is the measure of dissociation of a base and is known as the base-ionization constant, which is specific at a particular temperature. K b = [ OH − ] [ HA ] [ A − ] …… (2)
From the given salt solution systems, the X − ion that has the weakest conjugate acidand the decreasing order of the basic strength of the given anions, is to be determined. Concept introduction: A salt is a strong electrolyte, which dissociates completely when added to water. When a salt contains an anion that comes from a weak acid then the anion recombines with water to produce a weak acid and hydroxide ions, and forms a basic solution. The cation, if it comes from a strong base, does not recombine and is present in the solution as a free ion without having any effect on the pH of the solution. The reaction of the salt ( BA ) which takes place is: A − ( aq ) + H 2 O ( l ) ⇌ HA ( aq ) + OH − ( aq ) Here, A − comes from the weak acid HA and B + comes from strong base BOH . The pH of this solution is determined by the [ OH − ] The relationship between K b , K a and K w gives the quantitative basis of the reciprocal relationship between the strength of an acid and its conjugate base or vice-versa. K a × K b = K w …… (1) K b is the measure of dissociation of a base and is known as the base-ionization constant, which is specific at a particular temperature. K b = [ OH − ] [ HA ] [ A − ] …… (2)
Solution Summary: The author explains the relationship between the strength of an acid and its conjugate base or vice-versa.
From the given salt solution systems, the X− ion that has the weakest conjugate acidand the decreasing order of the basic strength of the given anions, is to be determined.
Concept introduction:
A salt is a strong electrolyte, which dissociates completely when added to water.
When a salt contains an anion that comes from a weak acid then the anion recombines with water to produce a weak acid and hydroxide ions, and forms a basic solution. The cation, if it comes from a strong base, does not recombine and is present in the solution as a free ion without having any effect on the pH of the solution.
The reaction of the salt (BA) which takes place is:
A−(aq)+H2O(l)⇌HA(aq)+OH−(aq)
Here, A− comes from the weak acid HA and B+ comes from strong base BOH. The pH of this solution is determined by the [OH−]
The relationship between Kb, Ka and Kw gives the quantitative basis of the reciprocal relationship between the strength of an acid and its conjugate base or vice-versa.
Ka×Kb=Kw …… (1)
Kb is the measure of dissociation of a base and is known as the base-ionization constant, which is specific at a particular temperature.
You are trying to decide if there is a single reagent you can add that will make the following synthesis possible without any other major side products:
xi
1. ☑
2. H₂O
хе
i
Draw the missing reagent X you think will make this synthesis work in the drawing area below.
If there is no reagent that will make your desired product in good yield or without complications, just check the box under the drawing area and leave it blank.
Click and drag to start drawing a
structure.
There is no reagent that will make this synthesis work without complications.
: ☐
S
☐
Predict the major products of this organic reaction:
H
OH
1. LiAlH4
2. H₂O
?
Note: be sure you use dash and wedge bonds when necessary, for example to distinguish between major products with different stereochemistry.
Click and drag to start drawing a
structure.
G
C
टे
For each reaction below, decide if the first stable organic product that forms in solution will create a new C-C bond, and check the appropriate box.
Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below.
Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions - just focus on the first
stable product you expect to form in solution.
NH2
CI
MgCl
?
Will the first product that forms in this reaction
create a new CC bond?
Yes
No
MgBr
?
Will the first product that forms in this reaction
create a new CC bond?
Yes
No
G
टे
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.