If it is possible for a solution to have hydrogen ion concentration 0.002 M and hydroxide ion concentration 5.2 × 10 − 6 M at 25 ∘ C should be explained. Concept Introduction: The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic. The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows: p H = − log H + Here, H + is concentration of hydrogen ion. Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows: p O H = − log OH − Here, OH − is concentration of hydroxide ion. pH and pOH of a solution are related to each other as follows: p H + p O H = 14 .
If it is possible for a solution to have hydrogen ion concentration 0.002 M and hydroxide ion concentration 5.2 × 10 − 6 M at 25 ∘ C should be explained. Concept Introduction: The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic. The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows: p H = − log H + Here, H + is concentration of hydrogen ion. Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows: p O H = − log OH − Here, OH − is concentration of hydroxide ion. pH and pOH of a solution are related to each other as follows: p H + p O H = 14 .
Solution Summary: The author explains that the concentration of hydrogen ions in a solution determines the acidity of the solution.
If it is possible for a solution to have hydrogen ion concentration 0.002 M and hydroxide ion concentration 5.2×10−6 M at 25∘C should be explained.
Concept Introduction:
The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.
The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:
pH=−logH+
Here, H+ is concentration of hydrogen ion.
Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:
pOH=−logOH−
Here, OH− is concentration of hydroxide ion.
pH and pOH of a solution are related to each other as follows:
Predict the products of this organic reaction:
+
H
ZH
NaBH3CN
H+
n.
?
Click and drag to start drawing a
structure.
X
What is the missing reactant R in this organic reaction?
+ R
H3O+
+
• Draw the structure of R in the drawing area below.
• Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer.
Click and drag to start drawing a
structure.
What would be the best choices for the missing reagents 1 and 3 in this synthesis?
1
1. PPh3
2. n-BuLi
2
• Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like.
• Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is.
• Note: if one of your reagents needs to contain a halogen, use bromine.
Click and drag to start drawing a structure.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.