Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 5P
Find the size and age of an Einstein–de Sitter Universe probed by Z = 5 quasars.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The largest known redshift attributed to a specifi c molecule is z = 6.42 from the CO molecule in the quasar SDSS J1148+5251. Find the quasar’s distance from us and recession speed relative to us
Consider a universe where Big Bang nucleosynthesis
produced significantly more 4He than 1H. Estimate
the observed redshift, z, of the Cosmic Radiation
Background (CMB) by an observer that observes the
CMB to have a blackbody temperature of 2.715 K.
Assume this universe has Ob = 0. 0486, QDM =
O. 2588 and QA = 0. 6911
A 0.75 m radio signal is detected from a galaxy as 2.0 m. Estimate the relative velocity.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Use the Friedmann equations to show that the deceleration parameter go and the density parameter 2 are related through qo = 2/2 for a universe containing only dust.arrow_forwardThe critical density of a universe is around 5×10-27 kg/m³. Estimate the Hubble constant for this universe.arrow_forwardIn 1998 a galaxy named RD1 was discovered with a redshift of 5.34. (a) What is the speed of this galaxy with respect to us? (b) Use Hubble’s law to determine how far away the galaxy is.arrow_forward
- Distances to local galaxies are determined by measuring the brightness of stars, called Cepheid variables, that can beobserved individually and that have absolute brightnesses at a standard distance that are well known. Explain how the measuredbrightness would vary with distance as compared with the absolute brightness.arrow_forwardEstimate the critical density of the universe if the Hubble's constant was 100 km/s/Mpc.arrow_forwardA galaxy is observed to be at 10.0 Mpc from Earth. If it is receding at 520 km/s, calculate the Hubble's constant.arrow_forward
- The visible section of the Universe is a sphere centered on the bridge of your nose, with radius 13.7 billion light-years. (a) Explain why the visible Universe is getting larger, with its radius increasing by one light-year in every year. (b) Find the rate at which the volume of the visible section of the Universe is increasing.arrow_forwardIt can be shown that if an object orbiting a star of mass M in a circular orbit of radius R has speed v, then Rv? M Suppose a star orbits the center of the galaxy it is contained in with an orbit that is nearly circular with radius 18 R = 2.5 x 10 and velocity v = 230 km/s. Use the result above to estimate the mass of the portion of the galaxy inside the star's orbit (place all of this mass at the center of the orbit). Mass =arrow_forwardA galaxy has a redshift of z = 0.15 and you are asked to determine the wavelengths at which its Call H and K lines would appear in the observed spectrum. The rest-frame wavelengths of the Call H and K lines are o 3968.5 Å and 3933.6 Å, respectively. NOTE: assume Ho 72 kms ¹ Mpc¹. = =arrow_forward
- The critical mass density needed to just halt the expansion of the universe is approximately 10-26 kg/m3. Find the number of neutrinos per cubic meterneeded to close the universe if their average mass is 7 eV/c2 and they have negligible kinetic energies.arrow_forwardA 1.6 GHz radio signal is detected from a galaxy as 0.86GHz. Estimate the relative velocity.arrow_forwardTwo distant galaxies are observed to have redshifts z1 = 0.05 and z2 = 0.15, and distances d1 = 220.60 Mpc and d2 = 661.75 Mpc, respectively. Assuming the motion of the galaxies is due to the Hubble flow, determine the value of the Hubble constant, H0. Show how the value of H0 can be used to estimate the age of the Universe, describing any assumptions that you make. Use the value of H0 you have obtained to estimate the age of the Universe, expressing your answer in Gyr.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY