Concept explainers
(a)
(a)
Answer to Problem 6P
Wavelength is
Explanation of Solution
Write the Hubble’s law equation.
Here,
Write the relativistic doppler formula.
Here,
Conclusion:
Substitute
Substitute 590 nm for
Thus, the wavelength is
(b)
Wavelength of light emitted from a galaxy lies at
(b)
Answer to Problem 6P
Wavelength is
Explanation of Solution
Substitute
Substitute 590 nm for
Conclusion:
Thus, the wavelength is
(b)
Wavelength of light emitted from a galaxy lies at
(b)
Answer to Problem 6P
Wavelength is
Explanation of Solution
Substitute
Substitute 590 nm for
Conclusion:
Thus, the wavelength is
Want to see more full solutions like this?
- The nearest neutron star (a collated star made primarily of neutrons) is about 3.00 1018 m away from Earth. Given that the Milky Way galaxy (Fig. P1.81) is roughly a disk of diameter 1021 m and thickness 1019 m, estimate the number of neutron stars in the Milky Way to the nearest order of magnitude. Figure P1.81arrow_forwardThe bright radio galaxy, 3c84, is observed to be moving away from the Earth at such high speed that the emitted blue 434-nm Hγ line of hydrogen is Doppler-shifted to 442 nm. Edwin Hubble discovered that all objects outside the local group of galaxies are moving away from us, with speeds v proportional to their distances R. Hubble's law is expressed as v = HR, where the Hubble constant has the approximate value H ≈ 22 ✕ 10−3 m/(s · ly). Determine the distance from the Earth to this galaxy. _________ lyarrow_forwardA space based observatory collects light emitted by a given galaxy. The light was initially emitted with a frequency of 600*10^12Hz but the detected signal is red shifted by 40*10^12Hz How fast is the galaxy moving and in what direction? Show the algebraic form of any equation(s) that you apply and report your calculation in the correct units and with the correct number of significant figures.arrow_forward
- A galaxy is observed to recede from Earth with an approximate speed of 0.81c. Approximately how far d from Earth is this galaxy? Give an answer in units of megaparsecs (Mpc). d = ? Mpc How long ago t was the light that we see emitted by the galaxy? Give an answer in units of years. t = ? yearsarrow_forwardA galaxy has a redshift of z = 0.15 and you are asked to determine the wavelengths at which its Call H and K lines would appear in the observed spectrum. The rest-frame wavelengths of the Call H and K lines are o 3968.5 Å and 3933.6 Å, respectively. NOTE: assume Ho 72 kms ¹ Mpc¹. = =arrow_forwarda) Define the term “standard candle” as used in cosmology b). The flux is defined as f(Dlum) = L /4πD2lum , where L is the absolute luminosity and Dlum is the distance to the radiation source (you may assume z ≪ 1). Assume that we have measured the flux to be f = 7.234 10−23Wm−2 and the absolute luminosity is given by L = 3.828 1026W. Calculate the luminosity distance Dlum to the object in Mpc. c). Calculate the distance modulus µ for the object of the previous subquestion. Show that the distance modulus µ can be written as given in imagearrow_forward
- In vacuum, the H-alpha line has a rest-frame wavelength of 656.461 nm. You took a spectrum of the center of a galaxy at an observatory on the ground and measured a wavelength of 656.65 nm for the H-alpha line. What is the radial velocity of the galaxy relative to the observer [km/s]? Note that the index of refraction of air is 1.0003 at that wavelength. As a result, the rest-frame wavelength of the H-alpha line in air differs from the rest-frame wavelength in vacuum.arrow_forwardTwo galaxies are moving away from each other at 8000 km/sec and are 4x103 light-years apart. It was observed that their speed is constant. Calculate the time taken by them to move 4x103 light-years in years.arrow_forwardRecent findings in astrophysics suggest that the observable universe can be modeled as a sphere of radius R=13.7x109 light-years=13.0 x 1025m with an average total mass density of about 1x10-26 kg/m3 Only about 4% of total mass is due to “ordinary” matter (such as protons, neutrons, and electrons). Estimate how much ordinary matter (in kg) there is in the observable universe. (For the light-year, see Problem 19.)arrow_forward
- The visible section of the Universe is a sphere centered on the bridge of your nose, with radius 13.7 billion light-years. (a) Explain why the visible Universe is getting larger, with its radius increasing by one light-year in every year. (b) Find the rate at which the volume of the visible section of the Universe is increasing.arrow_forwardThe most distant quasar is "J0313-1806". Its redshift is z = 7.64. [ z = (femitted - fobserved)/ fobserved] Assume that the redshift is due to relative motion. Then how fast is the quasar moving away from Earth? (speed as the fraction of c = ) | .704 According to Hubble's Law, the distance (r) depends on the speed of recession (v) according to v = Hor where Ho~ 20km/s Mly How many years are required for light to travel from the quasar to Earth? (years = )arrow_forwardA galaxy is observed to be at 10.0 Mpc from Earth. If it is receding at 520 km/s, calculate the Hubble's constant.arrow_forward
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning