Concept explainers
Predict/Calculate Two metal rods of equal length—one aluminum, the other stainless steel—are connected in parallel with a temperature of 20.0 °C at one end and 118 °C at the other end. Both rods have a circular cross section with a diameter of 3.50 cm. (a) Determine the length the rods must have if the combined rate of heat flow through them is to be 27.5 J per second. (b) If the length of the rods is doubled, by what factor does the rate of heat flow change?
Trending nowThis is a popular solution!
Chapter 16 Solutions
EBK PHYSICS
Additional Science Textbook Solutions
Organic Chemistry (8th Edition)
Microbiology: An Introduction
Campbell Biology (11th Edition)
Microbiology with Diseases by Body System (5th Edition)
Applications and Investigations in Earth Science (9th Edition)
Human Biology: Concepts and Current Issues (8th Edition)
- For the human body, what is the rate of heat transfer by conduction through the body’s tissue with the following conditions: the tissue thickness is 3.00 cm, the change in temperature is 2.00C, and the skin area is 1.50m2. How does this compare with the average heat transfer rate to the body resulting from an energy intake of about 2400 kcal per day? (No exercise is included.)arrow_forwardThe specific heat of substance A is greater than that of substance B. Both A and B are at the same initial temperature when equal amounts of energy are added to them. Assuming no melting or vaporization occurs, which of the following can be concluded about the final temperature TA of substance A and the final temperature TB of substance B? (a) TA TB (b) TA TB (c) TA = TB (d) More information is needed.arrow_forwardA glass coffee pot has a circular bottom with a 9.00-cm diameter in contact with a heating element that keeps the coffee warm with a continuous heat transfer rate of 50.0 W (a) What is the temperature of the bottom of the pot, if it is 3.00 mm thick and the inside temperature is 60.0C ? (b) If the temperature of the coffee remains constant and all of the heat transfer is removed by evaporation, how many grams per minute evaporate? Take the heat of vaporization to be 2340kJ/kg.arrow_forward
- Calculate the rate of heat conduction out of the human body, assuming that the core internal temperature is 37.0 , the skin temperature is 34.0 , the thickness of the fatty tissues between the core and the skin averages 1.00 cm, and the surface area is 1.40 m2.arrow_forward(a) The number of kilocalories in food is determined by calorimetry techniques in which the food is burned and the amount of heat transfer is measured. How many kilocalories per gram ale there in a 5.00-g peanut if the energy from burning it is transferred to 0. 500 kg of water held in a 0.100-kg aluminum cup, causing a 54.9- temperature increase? Assume the process takes place in an ideal calorimeter, in other words a perfectly insulated container. (b) Compare your answer to the following labeling information found on a package of dry roasted peanuts: a sewing of 33 g contains 200 calories. Comment on whether the values are consistent.arrow_forwardFor the human body, what is the rate of heat transfer by conduction through the body's tissue with the following conditions: the tissue thickness is 3.00 cm, the difference in temperature is 2.00 , and the skin area is 1.50 m2. How does this compare with the average heat transfer rate to the body resulting from an energy intake of about 2400 kcal per day? (No exercise is included.)arrow_forward
- Two concrete spans that form a bridge of length L are placed end to end so that no room is allowed for expansion (Fig. P16.63a). If a temperature increase of T occurs, what is the height y to which the spans rise when they buckle (Fig. P16.63b)?arrow_forwardInside the wall of a house, an L-shaped section of hot-water pipe consists of three parts: a straight horizontal piece h = 28.0 cm long, an elbow, and a straight, vertical piece = 134 cm long (Fig. P10.51). A stud and a second- story floorboard hold the ends of this section of copper pipe stationary. Find the magnitude and direction of the displacement of the pipe elbow when the water flow is turned on, raising the temperature of the pipe from 18.0C to 46.5C. Figure P10.51arrow_forwardStars A and B have the same temperature, but star A has twice the radius of star B. (a) What is the ratio of star As power output to star Bs output due to electromagnetic radiation? The emissivity of both stars can be assumed to be 1. (b) Repeat the question if the stars have the same radius, but star A has twice the absolute temperature of star B. (c) Whats the ratio if star A has both twice the radius and twice the absolute temperature of star B?arrow_forward
- A hollow aluminum cylinder 20.0 cm deep has an internal capacity of 2.000 L at 20.0C. It is completely filled with turpentine at 20.0C. The turpentine and the aluminum cylinder are then slowly warmed together to 80.0C. (a) How much turpentine overflows? (b) What is the volume of the turpentine remaining in the cylinder at 80.0C? (c) If the combination with this amount of turpentine is then cooled back to 20.0C, how far below the cylinders rim does the turpentines surface recede?arrow_forwardEqual 0.400-kg masses of lead and tin at 60.0C are placed in 1.00 kg of water at 20.0C. (a) What is the equilibrium temperature of the system? (b) If an alloy is half lead and half tin by mass, what specific heat would you anticipate for the alloy? (c) How many atoms of tin NSn, are in 0.400 kg of tin, and how many atoms of lead NPb are in 0.400 kg of lead? (d) Divide the number NSn of tin atoms by the number NPb of lead atoms and compare this ratio with the specific heat of tin divided by the specific beat of lead. What conclusion can be drawn?arrow_forward(a) Calculate the rate of heat conduction through a double-paned window that has a 1.50m3 area and is made of two panes of 0.800-cm-thick glass separated by a 1.00-cm air gap. The inside surface temperature is 15.0C, while that on the outside is 10.0C. (Hint: There are identical temperature drops across the two glass panes. First find these and then the temperature drop across the air gap. This problem ignores the increased heat transfer in the air gap due to convection.) (b) Calculate the rate of heat conduction through a 1.60-cm-thick window of the same area and with the same temperatures. Compare your answer with that for part (a).arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning