The Cosmic Perspective (8th Edition)
8th Edition
ISBN: 9780134059068
Author: Jeffrey O. Bennett, Megan O. Donahue, Nicholas Schneider, Mark Voit
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16, Problem 44EAP
Degeneracy Pressure. Describe how Jupiter would be different if there were no such thing as degeneracy pressure.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Why are we unlikely to find Earth-like planets around halo stars in the Galaxy?
A. Halo stars formed in a different way from disk stars.
B. Planets around stars are known to be extremely rare.
C. Halo stars formed in an environment where there were few heavy elements to create rocky planets.
D. Halo stars do not have enough mass to hold onto planets.
Is the answer C? Since halo stars are formed early when the galaxy consisted of mainly hydrogen and helium, there are no heavier elements available to create Earth-like planets so just halo stars are formed?
Thanks!
Problem 2. Thermal Energy of the Gas Giants: Energy Radiated by Saturn (Palen, et. al., 1st Edition, Chapter 8, problems 40, 62)
The equilibrium temperature (Links to an external site.) for Saturn should be 82 K but instead we find an average temperature of 95 K.
How much more energy is Saturn radiating into space than it absorbs from the sun?
Does this violate the law of conservation of energy?
What is the source of this additional energy?
Kepler-444 is one of many stars with terrestrial planets that is over 10 billion
a) What do you think the spectral type of Kepler-444 might be?
b) How do stars of this spectral type end their lives?
c) If evolution followed a similar course on a habitable pranet around a star similar to
Kepler-444, it would be 5 billion years more advanced than we are. Let’s try to project
our future and see what happens. In particular, suppose our civilization gets motivated
enough to colonize another planet. Kepler indicates that most stars have potentially
habitable (and colonizable) planets, so roughly how far away is the typical “nearest"
planet?
d) The New Horizons probe on its way to Pluto took 9 years to travel 30 AU. If we could
send colony ships with the same average speed, roughly how long would it take to reach
the typical nearest planet?
уears
old.
Chapter 16 Solutions
The Cosmic Perspective (8th Edition)
Ch. 16 - Prob. 1VSCCh. 16 - Prob. 2VSCCh. 16 - Prob. 3VSCCh. 16 - Prob. 4VSCCh. 16 - Prob. 1EAPCh. 16 - Prob. 2EAPCh. 16 - Prob. 3EAPCh. 16 - Prob. 4EAPCh. 16 - Prob. 5EAPCh. 16 - Prob. 6EAP
Ch. 16 - Prob. 7EAPCh. 16 - Prob. 8EAPCh. 16 - Prob. 9EAPCh. 16 - Prob. 10EAPCh. 16 - Prob. 11EAPCh. 16 - Prob. 12EAPCh. 16 - Prob. 13EAPCh. 16 - Prob. 14EAPCh. 16 - Prob. 15EAPCh. 16 - Prob. 16EAPCh. 16 - Prob. 17EAPCh. 16 - Prob. 18EAPCh. 16 - Prob. 19EAPCh. 16 - Prob. 20EAPCh. 16 - Prob. 21EAPCh. 16 - Prob. 22EAPCh. 16 - Prob. 23EAPCh. 16 - Prob. 24EAPCh. 16 - Prob. 25EAPCh. 16 - Prob. 26EAPCh. 16 - Prob. 27EAPCh. 16 - Prob. 28EAPCh. 16 - Prob. 29EAPCh. 16 - Prob. 30EAPCh. 16 - Prob. 31EAPCh. 16 - Prob. 32EAPCh. 16 - Prob. 33EAPCh. 16 - Prob. 34EAPCh. 16 - Prob. 35EAPCh. 16 - Prob. 36EAPCh. 16 - Prob. 37EAPCh. 16 - Prob. 38EAPCh. 16 - Prob. 39EAPCh. 16 - Prob. 40EAPCh. 16 - Prob. 41EAPCh. 16 - Prob. 42EAPCh. 16 - Prob. 43EAPCh. 16 - Degeneracy Pressure. Describe how Jupiter would be...Ch. 16 - Prob. 45EAPCh. 16 - Prob. 46EAPCh. 16 - Prob. 47EAPCh. 16 - Prob. 48EAPCh. 16 - Prob. 49EAPCh. 16 - Prob. 50EAPCh. 16 - Prob. 51EAPCh. 16 - Prob. 52EAPCh. 16 - Prob. 53EAPCh. 16 - Prob. 54EAPCh. 16 - Prob. 55EAPCh. 16 - Life in a Molecular Cloud? As far as we know,...Ch. 16 - Prob. 57EAPCh. 16 - Prob. 58EAPCh. 16 - Prob. 59EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When astronomers found the first giant planets with orbits of only a few days, they did not know whether those planets were gaseous and liquid like Jupiter or rocky like Mercury. The observations of HD 209458 settled this question because observations of the transit of the star by this planet made it possible to determine the radius of the planet. Use the data given in the text to estimate the density of this planet, and then use that information to explain why it must be a gas giant.arrow_forward1. A planetary nebula has an angular diameter of 76 arc seconds and a distance of 5100 ly. What is its linear diameter (in ly)? Hint: Use the small-angle formula: angular diameter (in arc seconds) 2.06 ✕ 105 = linear diameter distance 2. Suppose a planetary nebula is 3.2 pc in diameter, and Doppler shifts in its spectrum show that the planetary nebula is expanding at 31 km/s. How old is the planetary nebula in yr? (Note: 1 pc = 3.1 ✕ 1013 km and 1 yr = 3.2 ✕ 107 s.)arrow_forwardGuide Questions:1. What is the common end-product of proton-proton chain reaction and CNO cycle?2. Why is CNO cycle important in stellar formation and evolution?arrow_forward
- 9.Trappist 1 a small red dwarf ( M*-0.089) with R*=0.12, L*=0.000553 and T=2566. What in AU's is the 400 K radius? 10. If albedo = 0.3 there, what radius to get the same effective temperature if albedo =0.2?arrow_forwardWhat produced the helium now present in the Sun’s atmosphere? In Jupiter’s atmosphere? In the Sun’s core?arrow_forwardPlease give answer. Describe, with the aid of suitable diagrams, the basic structure and components of the ATLAS detector at the LHC.arrow_forward
- 7. Why does a solar nebula flatten into a disk instead of a sphere, even though the gravity of a nebula pulls in all directions?arrow_forward1) There is a one earth mass planet orbiting an M5 star of 0.2 Mo and luminosity 1x10-2 Lo- A) How close does the planet need to be to the star in order to receive the same amount of energy as the Earth receives from the sun? B) What is the orbital period of the planet at this distance? C) What is the magnitude of the radial velocity perturbation of the star? D) If the system is edge on to us, would we be likely to detect this planet using the radial velocity method?arrow_forwardP3arrow_forward
- White Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2 x 106 g/cm?. Find the radius of the white dwarf in km to three significant digits. (Hint: Density = mass/volume, and the volume of a 4 sphere is Tr.) 3 km Compare your answer with the radii of the planets listed in the Table A-10. Which planet is this white dwarf is closely equal to in size? I Table A-10 I Properties of the Planets ORBITAL PROPERTIES Semimajor Axis (a) Orbital Period (P) Average Orbital Velocity (km/s) Orbital Inclination Planet (AU) (106 km) (v) (days) Eccentricity to Ecliptic Mercury 0.387 57.9 0.241 88.0 47.9 0.206 7.0° Venus 0.723 108 0.615 224.7 35.0 0.007 3.4° Earth 1.00 150 1.00 365.3 29.8 0.017 Mars 1.52 228 1.88 687.0 24.1 0.093 1.8° Jupiter 5.20 779 11.9 4332 13.1 0.049 1.30 Saturn 9.58 1433 29.5 10,759 9.7 0.056 2.5° 30,799 60,190 Uranus 19.23 2877 84.3 6.8 0.044 0.8° Neptune * By definition. 30.10 4503 164.8 5.4 0.011 1.8° PHYSICAL PROPERTIES (Earth = e)…arrow_forwardA star's Zero Age Main Sequence (ZAMS) radius R, luminosity L, and effective temperature Teff depend primarily on the star's mass. These parameters do evolve somewhat over time, however, while the star still remains on the main sequence. Discuss in what direction each of these parameters evolves, and explain why this occurs. By physical in your explanation. How did this evolution affect our own solar system, if at all?arrow_forward1. The discovery of Cosmic Background Radiation helped explain...a. Nebular-Condensation Theoryb. why the outer planets are composed primarily of iron and other heavy elementsc. why the sun is composed primarily of hydrogen and heliumd. both a and b are correcte. none of these are correctarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY