College Physics: A Strategic Approach (4th Edition)
College Physics: A Strategic Approach (4th Edition)
4th Edition
ISBN: 9780134609034
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 16, Problem 43P

Two identical loudspeakers 2.0 m apart are emitting 1800Hz sound waves into a room where the speed of sound is 340 m/s. Is the point 4.0 m directly in front of one of the speakers, perpendicular to the plane of the speakers, a point of maximum constructive interference, perfect destructive interference, or something in between?

Blurred answer
Students have asked these similar questions
Two identical loudspeakers 2.0 m apart are emitting 1800 Hz sound waves into a room where the speed of sound is 340 m/s. Is the point 4.0 m directlyin front of one of the speakers, perpendicular to the line joining the speakers, a point of maximum constructive interference, perfect destructive interference, or something in between?
two identical loudspeakers are 3.4 m apart. A person stands 5.8m from one speaker and 3.6 from the other. What is the lowest frequency at which destructive interference will occur at this point? The speed of sound in air is 343m/s/
Two identical speakers are 3.50 m and 5.20 m from a listener. What is the lowest frequency (n = 1) that would cause constructive interference there? (Hint: v = Af = 343 m/s) (Unit = Hz)

Chapter 16 Solutions

College Physics: A Strategic Approach (4th Edition)

Ch. 16 - When you speak after breathing helium, in which...Ch. 16 - Prob. 14CQCh. 16 - A synthesizer is a keyboard instrument that can be...Ch. 16 - A small boy and a grown woman both speak at...Ch. 16 - Prob. 18MCQCh. 16 - At x = 3 cm, what is the earliest time that y will...Ch. 16 - Prob. 20MCQCh. 16 - Prob. 21MCQCh. 16 - A student in her physics lab measures the...Ch. 16 - Prob. 23MCQCh. 16 - Resonances of the ear canal lead to increased...Ch. 16 - The frequency of the lowest standing-wave mode on...Ch. 16 - Suppose you pluck a string on a guitar and it...Ch. 16 - Figure P16.11 is a snapshot graph at t = 0 s of...Ch. 16 - Prob. 2PCh. 16 - Prob. 3PCh. 16 - Prob. 4PCh. 16 - Prob. 5PCh. 16 - Prob. 6PCh. 16 - At t = 0 s, a small upward (positive y) pulse...Ch. 16 - You are holding one end of an elastic cord that is...Ch. 16 - A 2.0-m-long string is fixed at both ends and...Ch. 16 - Figure P16.10 shows a standing wave oscillating at...Ch. 16 - A bass guitar string is 89 cm long with a...Ch. 16 - Prob. 12PCh. 16 - a. What are the three longest wavelengths for...Ch. 16 - Prob. 14PCh. 16 - Prob. 15PCh. 16 - Prob. 16PCh. 16 - The lowest note on a grand piano has a frequency...Ch. 16 - An experimenter finds that standing waves on a...Ch. 16 - Ocean waves of wavelength 26 m are moving directly...Ch. 16 - Prob. 20PCh. 16 - Prob. 21PCh. 16 - Prob. 22PCh. 16 - Prob. 23PCh. 16 - An organ pipe is made to play a low note at 27.5...Ch. 16 - The speed of sound in room temperature (20C) air...Ch. 16 - Parasaurolophus was a dinosaur whose...Ch. 16 - A drainage pipe running under a freeway is 30.0 m...Ch. 16 - Prob. 28PCh. 16 - Although the vocal tract is quite complicated, we...Ch. 16 - You know that you sound better when you sing in...Ch. 16 - A child has an ear canal that is 1.3 cm long. At...Ch. 16 - When a sound wave travels directly toward a hard...Ch. 16 - The first formant of your vocal system can be...Ch. 16 - When you voice the vowel sound in hat, you narrow...Ch. 16 - The first and second formants when you make an ee...Ch. 16 - Two loudspeakers emit sound waves along the...Ch. 16 - Two loudspeakers in a 20C room emit 686 Hz sound...Ch. 16 - In noisy factory environments, its possible to use...Ch. 16 - Two identical loudspeakers separated by distance d...Ch. 16 - Prob. 42PCh. 16 - Two identical loudspeakers 2.0 m apart are...Ch. 16 - Prob. 44PCh. 16 - Musicians can use beats to tune their instruments....Ch. 16 - A student waiting at a stoplight notices that her...Ch. 16 - Two strings are adjusted to vibrate at exactly 200...Ch. 16 - A flute player hears four beats per second when...Ch. 16 - Prob. 50GPCh. 16 - In addition to producing images, ultrasound can be...Ch. 16 - An 80-cm-long steel string with a linear density...Ch. 16 - Tendons are, essentially, elastic cords stretched...Ch. 16 - Spiders may tune strands of their webs to give...Ch. 16 - Prob. 56GPCh. 16 - Prob. 57GPCh. 16 - Prob. 58GPCh. 16 - Prob. 60GPCh. 16 - A 40-cm-long tube has a 40-cm-long insert that can...Ch. 16 - The width of a particular microwave oven is...Ch. 16 - Two loudspeakers located along the x-axis as shown...Ch. 16 - Two loudspeakers 42.0 m apart and facing each...Ch. 16 - Prob. 65GPCh. 16 - Two loudspeakers, 4.0 m apart and facing each...Ch. 16 - Piano tuners tune pianos by listening to the beats...Ch. 16 - A flutist assembles her flute in a room where the...Ch. 16 - Prob. 69GPCh. 16 - A Doppler blood flowmeter emits ultrasound at a...Ch. 16 - An ultrasound unit is being used to measure a...Ch. 16 - Prob. 72MSPPCh. 16 - Prob. 73MSPPCh. 16 - Prob. 74MSPPCh. 16 - Prob. 75MSPP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY
Vibrations of Stretched String; Author: PhysicsPlus;https://www.youtube.com/watch?v=BgINQpfqJ04;License: Standard Youtube License