
Concept explainers
(a)
Rank the functions from largest to the smallest according to their amplitude.
(a)

Answer to Problem 3OQ
The ranking of functions from largest to the smallest according to their amplitude is
Explanation of Solution
Write the general expression for a sinusoidal wave.
Here,
Consider wave function (a).
Compare equation (I) and (II). The amplitude of the wave (a) is
Consider wave function (b).
Compare equation (I) and (III). The amplitude of the wave (b) is
Consider wave function (c).
Compare equation (I) and (IV). The amplitude of the wave (c) is
Consider wave function (d).
Compare equation (I) and (V). The amplitude of the wave (d) is
Consider wave function (e).
Compare equation (I) and (VI). The amplitude of the wave (e) is
Thus the raking of amplitude each wave from largest to the smallest is (c)=(d)>(e)>(b)>(a).
Conclusion:
Therefore, the ranking of wave functions from largest to the smallest according to their amplitude is
(b)
Rank the functions from largest to the smallest according to their wavelength.
(b)

Answer to Problem 3OQ
The ranking of functions from largest to the smallest according to their wavelength is
Explanation of Solution
Write the expression for wavelength.
Conclusion:
Substitute,
Substitute,
Substitute,
Substitute,
Substitute,
Thus, the ranking of wavelength from larger to smaller is (c)>(a)=(b)>(d)>(e).
Therefore, the ranking of functions from largest to the smallest according to their wavelength is
(c)
Rank the functions from largest to the smallest according to their frequencies.
(c)

Answer to Problem 3OQ
The ranking of functions from largest to the smallest according to their frequency is
Explanation of Solution
Write the expression for frequency.
Conclusion:
Substitute,
Substitute,
Substitute,
Substitute,
Substitute,
Thus, the ranking of frequencies of wave from largest to smallest is (e)>(d)>(a)=(b)=(c).
Therefore, the ranking of functions from largest to the smallest according to their frequency is
(d)
Rank the functions from largest to the smallest according to their period.
(d)

Answer to Problem 3OQ
The ranking of functions from largest to the smallest according to their period is
Explanation of Solution
Write the expression for period.
Conclusion:
Since frequency is inversely proportional to time period, the ranking will be the reverse order of the ranking in part (c).
Thus, the ranking of functions from largest to the smallest according to their period is
Therefore, the ranking of functions from largest to the smallest according to their period is
(e)
Rank the functions from largest to the smallest according to their speed.
(e)

Answer to Problem 3OQ
The ranking of functions from largest to the smallest according to their speed is
Explanation of Solution
Write the expression for speed.
Conclusion:
Substitute,
Substitute,
Substitute,
Substitute,
Substitute,
Thus, the ranking of speed of the wave from largest to smallest is (c)>(a)=(b)=(d)>(e).
Therefore, ranking of functions from largest to the smallest according to their speed is
Want to see more full solutions like this?
Chapter 16 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- I need help with part B. I cant seem to get the correct answer. Please walk me through what youre doing to get to the answer and what that could bearrow_forwardQuestion 6: Chlorine is widely used to purify municipal water supplies and to treat swimming pool waters. Suppose that the volume of a particular sample of Cl₂ gas is 8.70 L at 895 torr and 24°C. (a) How many grams of Cl₂ are in the sample? ⚫ Atomic mass of CI = 35.453 g/mol • Molar mass of Cl₂ = 2 x 35.453 = 70.906 g/mol Solution: Use the Ideal Gas Law: Step 1: Convert Given Values • Pressure: P = 895 torr → atm PV= = nRT 1 P = 895 × = 1.1789 atm 760 • Temperature: Convert to Kelvin: T24273.15 = 297.15 K • Gas constant: R = 0.0821 L atm/mol. K Volume: V = 8.70 L Step 2: Solve for n . PV n = RT n = (1.1789)(8.70) (0.0821)(297.15) 10.25 n = = 0.420 mol 24.405 Step 3: Calculate Mass of Cl₂ Final Answer: 29.78 g of Cl₂. mass nx M mass= (0.420)(70.906) mass= 29.78 garrow_forwardE1 R₁ w 0.50 20 Ω 12 R₁₂ ww ΒΩ R₂ 60 E3 C RA w 15 Ω E2 0.25 E4 0.75 Ω 0.5 Ωarrow_forward
- What is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.) 5.0 με 4.0 με 2.0 με + 1.0 m 1.0 m -40 με 2.0 μCarrow_forwardWhat is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µCarrow_forwardAn ideal gas in a sealed container starts out at a pressure of 8900 N/m2 and a volume of 5.7 m3. If the gas expands to a volume of 6.3 m3 while the pressure is held constant (still at 8900 N/m2), how much work is done by the gas? Give your answer as the number of Joules.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





