Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
9th Edition
ISBN: 9781305932302
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 2OQ
(a)
To determine
The method to create longitudinal wave in a string.
(b)
To determine
Is it possible to create a transverse wave in string.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A person putting up power lines is told to stretch the wire between poles to a tension of about 800N. The person doesn't have a tension scale so they decide to measure the speed of a pulse created on the wire when they hit it with a wrench. The pulse travels from one pole 60m to another pole and back again in 2.6 s. The 60m long wire has a mass of 15kg. Should the wire be tightened or loosened? Explain how you decided.
Thanks!
Chapter 16 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
Ch. 16.1 - Prob. 16.1QQCh. 16.2 - A sinusoidal wave of frequency f is traveling...Ch. 16.2 - The amplitude of a wave is doubled, with no other...Ch. 16.3 - Suppose you create a pulse by moving the free end...Ch. 16.5 - Which of the following, taken by itself, would be...Ch. 16 - Prob. 1OQCh. 16 - Prob. 2OQCh. 16 - Prob. 3OQCh. 16 - Prob. 4OQCh. 16 - Prob. 5OQ
Ch. 16 - Prob. 6OQCh. 16 - Prob. 7OQCh. 16 - Prob. 8OQCh. 16 - Prob. 9OQCh. 16 - Prob. 1CQCh. 16 - Prob. 2CQCh. 16 - Prob. 3CQCh. 16 - Prob. 4CQCh. 16 - Prob. 5CQCh. 16 - Prob. 6CQCh. 16 - Prob. 7CQCh. 16 - Prob. 8CQCh. 16 - Prob. 9CQCh. 16 - A seismographic station receives S and P waves...Ch. 16 - Prob. 2PCh. 16 - Prob. 3PCh. 16 - Two points A and B on the surface of the Earth are...Ch. 16 - Prob. 5PCh. 16 - Prob. 6PCh. 16 - Prob. 7PCh. 16 - Prob. 8PCh. 16 - Prob. 9PCh. 16 - When a particular wire is vibrating with a...Ch. 16 - Prob. 11PCh. 16 - Prob. 12PCh. 16 - Prob. 13PCh. 16 - Prob. 14PCh. 16 - Prob. 15PCh. 16 - Prob. 16PCh. 16 - Prob. 17PCh. 16 - A sinusoidal wave traveling in the negative x...Ch. 16 - Prob. 19PCh. 16 - Prob. 20PCh. 16 - Prob. 21PCh. 16 - Prob. 22PCh. 16 - Prob. 23PCh. 16 - Prob. 24PCh. 16 - An Ethernet cable is 4.00 m long. The cable has a...Ch. 16 - Prob. 26PCh. 16 - Prob. 27PCh. 16 - Prob. 28PCh. 16 - Tension is maintained in a string as in Figure...Ch. 16 - Prob. 30PCh. 16 - Prob. 31PCh. 16 - Prob. 32PCh. 16 - Transverse waves are being generated on a rope...Ch. 16 - Prob. 34PCh. 16 - Prob. 35PCh. 16 - Prob. 36PCh. 16 - Prob. 37PCh. 16 - A horizontal string can transmit a maximum power...Ch. 16 - Prob. 39PCh. 16 - A two-dimensional water wave spreads in circular...Ch. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - Show that the wave function y = eb(x vt) is a...Ch. 16 - Prob. 44PCh. 16 - Prob. 45APCh. 16 - Prob. 46APCh. 16 - Prob. 47APCh. 16 - Prob. 48APCh. 16 - Prob. 49APCh. 16 - Prob. 50APCh. 16 - A transverse wave on a string is described by the...Ch. 16 - A sinusoidal wave in a string is described by the...Ch. 16 - Prob. 53APCh. 16 - Prob. 54APCh. 16 - Prob. 55APCh. 16 - Prob. 56APCh. 16 - Prob. 57APCh. 16 - Prob. 58APCh. 16 - A wire of density is tapered so that its...Ch. 16 - Prob. 60APCh. 16 - Prob. 61APCh. 16 - Prob. 62APCh. 16 - Prob. 63APCh. 16 - Prob. 64CPCh. 16 - Prob. 65CPCh. 16 - Prob. 66CPCh. 16 - Prob. 67CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- As shown in Figure P14.37, water is pumped into a tall, vertical cylinder at a volume flow rate R. The radius of the cylinder is r, and at the open top of the cylinder a tuning fork is vibrating with a frequency f. As the water rises, what time interval elapses between successive resonances? Figure P14.37 Problems 37 and 38.arrow_forwardTable 17.1 shows the speed of sound is typically an order of magnitude larger in solids than in gases. To what can this higher value be most directly attributed? (a) the difference in density between solids and gases (b) the difference in compressibility between solids and gases (c) the limited size of a solid object compared to a free gas (d) the impossibility of holding a gas under significant tensionarrow_forwardThe bulk modulus of water is 2.2 109 Pa (Table 15.2). The density of water is 103 kg/m3 (Table 15.1). Find the speed of sound in water and compare your answer with the value given in Table 17.1.arrow_forward
- The wave is a particular type of pulse that can propagate through a large crowd gathered at a sports arena (Fig. P13.54). The elements of the medium are the spectators, with zero position corresponding to their being seated and maximum position corresponding to their standing and raising their arms. When a large fraction of the spectators participates in the wave motion, a somewhat stable pulse shape can develop. The wave speed depends on peoples reaction time, which is typically on the order of 0.1 s. Estimate the order of magnitude, in minutes, of the time interval required for such a pulse to make one circuit around a large sports stadium. State the quantities you measure or estimate and their values.arrow_forwardReview. A steel guitar string with a diameter of 1.00 mm is stretched between supports 80.0 cm apart. The temperature is 0.0C. (a) Find the mass per unit length of this siring. (Use the value 7.86 103 kg/m4 for the density.) (b) The fundamental frequency of transverse oscillations of the string is 200 Hz. What is the tension in the string? Next, the temperature is raised to 30.0C. Find the resulting values of (c) the tension and (d) the fundamental frequency. Assume both the Youngs modulus of 20.0 1010 N/m2 and the average coefficient of expansion = 11.0 10-6 (C)-1 have constant values between 0.0C and 30.0C.arrow_forwardThe tensile stress in a thick copper bar is 99.5% of its elastic breaking point of 13.0 1010 N/m2. If 500-Hz sound wave is transmitted through the material, (a) what displacement amplitude will cause the bar to break? (b) What is the maximum speed of the elements of copper at this moment? (c) What is the sound intensity in the bar?arrow_forward
- A copper wire has a radius of 200 µ m and a length of 5.0 m. The wire is placed under a tension of 3000 N and the wire stretches by a small amount. The wire is plucked and a pulse travels down the wire. What is the propagation speed of the pulse? (Assume the temperature does not change: (=8.96gcm3,Y=1.11011Nm) .)arrow_forwardReview. Consider the apparatus shown in Figure P14.68a, where the hanging object has mass M and the string is vibrating in its second harmonic. The vibrating blade at the left maintains a constant frequency. The wind begins to blow to the right, applying a constant horizontal force on the hanging object. What is the magnitude of the force the wind must apply to the hanging object so that the string vibrates in its first harmonic as shown in Figure 14.68b? Figure P14.68arrow_forwardAn aluminum rod is clamped one-fourth of the way along its length and set into longitudinal vibration by a variable-frequency driving source. The lowest frequency that produces resonance is 4 400 Hz. The speed of sound in an aluminum rod is 5 100 m/s. Determine the length of the rod.arrow_forward
- A 2.00-kg block lies at rest on a frictionless table. A spring, with a spring constant of 100 N/m is attached to the wall and to the block. A second block of 0.50 kg is placed on top of the first block. The 2.00-kg block is gently pulled to a position x=+A and released from rest. There is a coefficient of friction of 0.45 between the two blocks. (a) What is the period of the oscillations? (b) What is the largest amplitude of motion that will allow the blocks to oscillate without the 0.50-kg block sliding off?arrow_forwardReview. A 150-g glider moves at v1 = 2.30 m/s on an air track toward an originally stationary 200-g glider as shown in Figure P16.53. The gliders undergo a completely inelastic collision and latch together over a time interval of 7.00 ms. A student suggests roughly half the decrease in mechanical energy of the two-glider system is transferred to the environment by sound. Is this suggestion reasonable? To evaluate the idea, find the implied sound level at a position 0.800 m from the gliders. If the students idea is unreasonable, suggest a better idea. Figure P16 53arrow_forwardThe overall length of a piccolo is 32.0 cm. The resonating air column is open at both ends. (a) Find the frequency of the lowest note a piccolo can sound. (b) Opening holes in the side of a piccolo effectively shortens the length of the resonant column. Assume the highest note a piccolo can sound is 4 000 Hz. Find the distance between adjacent anti-nodes for this mode of vibration.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning