College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 20TP
To determine
Representation of longitudinal and transverse waves.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
College Physics
Ch. 16 - Describe a system in which elastic potential...Ch. 16 - What conditions must be met to produce simple...Ch. 16 - (a) If frequency is not constant for some...Ch. 16 - Give an example of a simple harmonic oscillator,...Ch. 16 - Explain why you expect an object made of a stiff...Ch. 16 - As you pass freight truck with a trailer on a...Ch. 16 - Some people modify cars to be much closet to me...Ch. 16 - Pendulum clocks are made to run at the correct...Ch. 16 - Explain in terms of energy how dissipative forces...Ch. 16 - Give an example of a damped harmonic oscillator....
Ch. 16 - How would a car bounce after a bump under each of...Ch. 16 - Most harmonic oscillators are damped and, if...Ch. 16 - Why are soldiers in general ordered to “route...Ch. 16 - Give one example of a transverse wave and another...Ch. 16 - What is the difference between propagation speed...Ch. 16 - Speakers in stereo systems have two colorcoded...Ch. 16 - Two identical waves undergo pure constructive...Ch. 16 - Circular water waves decrease in amplitude as they...Ch. 16 - Fish ate hung on a spring scale to determine their...Ch. 16 - It is weighin time for the local under85kg rugby...Ch. 16 - One type of BB gun uses a spring-driven plunger to...Ch. 16 - (a) The springs of a pickup truck act like a...Ch. 16 - When an 80.0kg man stands on a pogo stick, the...Ch. 16 - A spring has a length of 0.200 m when a 0.300kg...Ch. 16 - What is the period of 60.0 Hz electrical power?Ch. 16 - If your heart rate is 150 beats per minute during...Ch. 16 - Find the frequency of a tuning fork that takes...Ch. 16 - A stroboscope is set to flash every 8.00105s. What...Ch. 16 - A tire has a tread pattern with a crevice every...Ch. 16 - Engineering Application Each piston of an engine...Ch. 16 - A type of cuckoo clock keeps time by having a mass...Ch. 16 - If the spring constant of a simple harmonic...Ch. 16 - A 0.500kg mass suspended from a spring oscillates...Ch. 16 - By how much leeway (both percentage and mass)...Ch. 16 - Suppose you attach the object with mass m to a...Ch. 16 - A diver on a diving board is undergoing simple...Ch. 16 - Suppose a diving beard wi1h no one on it bounces...Ch. 16 - Figure 15.46 This child’s toy relies on springs to...Ch. 16 - A 90.0kg skydiver hanging from a parachute bounces...Ch. 16 - What is the leng1h of a pendulum that has a period...Ch. 16 - Some people think a pendulum with a period of 1.00...Ch. 16 - What is the period of a 1.00mlong pendulum?Ch. 16 - How long does it take a child on a swing to...Ch. 16 - The pendulum on a cuckoo clock is 5.00 cm long....Ch. 16 - Two parakeets sit on a swing with their combined...Ch. 16 - (a) A pendulum that has a period of 3.00000 s and...Ch. 16 - A pendulum with a period of 2.00000 s in one...Ch. 16 - (a) What is the effect on the period of a pendulum...Ch. 16 - Find the ratio of the new/old periods of a...Ch. 16 - At what rate will a pendulum clock run on me Moon,...Ch. 16 - Suppose the length of a clock’s pendulum is...Ch. 16 - If a pendulumdriven clock gains 5.00 s/day, what...Ch. 16 - The length of nylon rope from which a mountain...Ch. 16 - Engineering Application Near the top of the...Ch. 16 - (a) What is me maximum 1nreluzmcity at an 85.0kg...Ch. 16 - A novelty clock has a 0.0100kg mass object...Ch. 16 - At what positions is the speed of a simple...Ch. 16 - A ladybug sits 12.0 cm from the center of a...Ch. 16 - The amplitude of a lightly damped oscillator...Ch. 16 - How much energy must the shock absorbers of a...Ch. 16 - If a car has a suspension system with a force...Ch. 16 - (a) How much will a spring that has a force...Ch. 16 - Suppose you have a 0.750kg object on a horizontal...Ch. 16 - Engineering Application: A suspension bridge...Ch. 16 - Stems in the South Pacific can create waves that...Ch. 16 - Waves on a swimming pool propagate at 0.750m/s....Ch. 16 - Wind gusts create ripples on the ocean that have a...Ch. 16 - How many times a minute does a boat bob up and...Ch. 16 - Scouts at a camp shake the rope bridge may have...Ch. 16 - What is the wavelength of the waves you create in...Ch. 16 - What is the wavelength of an earthquake that...Ch. 16 - Radio waves transmitted through space at...Ch. 16 - Your ear is capable of differentiating sounds that...Ch. 16 - (a) Seismographs measure the arrival times of...Ch. 16 - A car has two horns, one emitting a frequency of...Ch. 16 - The middleChammer of a piano hits two strings,...Ch. 16 - Two tuning forks having frequencies of 460 and 464...Ch. 16 - Twin jet engines on an airplane are producing an...Ch. 16 - A wave traveling on a Slinky® mat is stretched to...Ch. 16 - Three adjacent keys on a piano (F, F—sharp, and G)...Ch. 16 - Medical Application Ultrasound of intensity...Ch. 16 - The low-frequency speaker of a stereo set hag a...Ch. 16 - To increase intensity of a wave by a factor of 50,...Ch. 16 - Engineering Application A device called an...Ch. 16 - Astronomy Application Energy from the Sun arrives...Ch. 16 - Suppose you have a device that extracts energy...Ch. 16 - Engineering Application (a) A photovoltaic array...Ch. 16 - A microphone receiving a pure sound tone feeds an...Ch. 16 - Medical Application (a) What is the intensity in...Ch. 16 - Prob. 1TPCh. 16 - Prob. 2TPCh. 16 - Prob. 3TPCh. 16 - Prob. 4TPCh. 16 - Prob. 5TPCh. 16 - Prob. 6TPCh. 16 - Prob. 7TPCh. 16 - Prob. 8TPCh. 16 - Prob. 9TPCh. 16 - Prob. 10TPCh. 16 - Prob. 11TPCh. 16 - Prob. 12TPCh. 16 - Prob. 13TPCh. 16 - Prob. 14TPCh. 16 - Prob. 15TPCh. 16 - Prob. 16TPCh. 16 - Prob. 17TPCh. 16 - Prob. 18TPCh. 16 - Prob. 19TPCh. 16 - Prob. 20TPCh. 16 - Prob. 21TPCh. 16 - Prob. 22TPCh. 16 - Prob. 23TPCh. 16 - Prob. 24TPCh. 16 - Prob. 25TPCh. 16 - Prob. 26TPCh. 16 - Prob. 27TPCh. 16 - Prob. 28TPCh. 16 - Prob. 29TPCh. 16 - Prob. 30TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Give one example of a transverse wave and another of a longitudinal wave, being careful to note the relative directions of the disturbance and wave propagation in each.arrow_forwardRank the waves represented by the following functions from the largest to the smallest according to (i) their amplitudes, (ii) their wavelengths, (iii) their frequencies, (iv) their periods, and (v) their speeds. If the values of a quantity are equal for two waves, show them as having equal rank. For all functions, x and y are in meters and t is in seconds. (a) y = 4 sin (3x 15t) (b) y = 6 cos (3x + 15t 2) (c) y = 8 sin (2x + 15t) (d) y = 8 cos (4x + 20t) (e) y = 7 sin (6x + 24t)arrow_forwardThe A string on a cello vibrates in its first normal mode with a frequency of 220 Hz. The vibrating segment is 70.0 cm long and has a mass of 1.20 g. (a) Find the tension in the string, (b) Determine the frequency of vibration when the string vibrates in three segments.arrow_forward
- A cable with a linear density of =0.2 kg/m is hung from telephone poles. The tension in the cable is 500.00 N. The distance between poles is 20 meters. The wind blows across the line, causing the cable resonate. A standing waves pattern is produced that has 4.5 wavelengths between the two poles. The air temperature is T=20C . What are the frequency and wavelength of the hum?arrow_forwardA wave with particle oscillation parallel to the direction of propagation is a(n) _____ . (6.2) (a) transverse wave (b) longitudinal wave (c) light wave (d) none of the precedingarrow_forwardThe amplitude of a wave is doubled, with no other changes made to the wave. As a result of this doubling, which of the following statements is correct? (a) The speed of the wave changes. (b) The frequency of the wave changes. (c) The maximum transverse speed of an element of the medium changes. (d) Statements (a) through (c) are all true. (e) None of statements (a) through (c) is true.arrow_forward
- A swimmer in the ocean observes one day that the ocean surface waves are periodic and resemble a sine wave. The swimmer estimates that the vertical distance between the crest and the trough of each wave is approximately 0.45 m, and the distance between each crest is approximately 1.8 m. The swimmer counts that 12 waves pass every two minutes. Determine the simple harmonic wave function that would describes these waves.arrow_forwardWhich of the following actions will increase the speed of sound in air? (a) decreasing the air temperature (b) increasing the frequency of the sound (c) increasing the air temperature (d) increasing the amplitude of the sound wave (e) reducing the pressure of the airarrow_forwardA harmonic transverse wave function is given by y(x, t) = (0.850 m) sin (15.3x + 10.4t) where all values are in the appropriate SI units. a. What are the propagation speed and direction of the waves travel? b. What are the waves period and wavelength? c. What is the amplitude? d. If the amplitude is doubled, what happens to the speed of the wave?arrow_forward
- Give one example of a transverse wave and one example of a longitudinal wave, being careful to note the relative directions of the disturbance and wave propagation in each.arrow_forwardThe bulk modulus of water is 2.2 109 Pa (Table 15.2). The density of water is 103 kg/m3 (Table 15.1). Find the speed of sound in water and compare your answer with the value given in Table 17.1.arrow_forwardReview. A steel guitar string with a diameter of 1.00 mm is stretched between supports 80.0 cm apart. The temperature is 0.0C. (a) Find the mass per unit length of this siring. (Use the value 7.86 103 kg/m4 for the density.) (b) The fundamental frequency of transverse oscillations of the string is 200 Hz. What is the tension in the string? Next, the temperature is raised to 30.0C. Find the resulting values of (c) the tension and (d) the fundamental frequency. Assume both the Youngs modulus of 20.0 1010 N/m2 and the average coefficient of expansion = 11.0 10-6 (C)-1 have constant values between 0.0C and 30.0C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Supersonic Speed and Shock Waves; Author: AK LECTURES;https://www.youtube.com/watch?v=HfSSi3KJZB0;License: Standard YouTube License, CC-BY