Concept explainers
Whether the gain in organized kinetic energy, as a car burns more gasoline, contradicts second law of
Answer to Problem 1RQ
Solution:
No.
Explanation of Solution
Introduction:
Energy of an isolated system, such as the universe always remains constant, as stated by the law of conservation of energy. Energy is transformed into various forms such as disordered form of energy (thermal energy) or ordered form of energy (kinetic and potential energy).
Energy available in the universe is in ordered and disordered form. Although the energy is conserved at all times, only the energy thatcan be used to provide a useful work is of factual importance.
Second law of thermodynamics states that a system's ability to perform work depends upon the amount of organized form of energy present. Also, it is impossible to develop an engine thatcan convert all the disorganized form of energy (thermal energy) to useful work.
Explanation:
Gasoline is used to run the engine of the car. The engine of the car uses the chemical energy of the fuel and converts it into useful work to power the car. At first, this might seem to contradict the second law of thermodynamics, but it actually does not. This is because along with the useful work, a large amount of thermal energy is exhausted and energy in the form of sound is also lost (both being less organized form of energy), when gasoline is burnt.
So, as the car moves faster and faster, it does gain organized energy but for that more and more amount of fuel is burnt, which in turn increases the energy thatis lost to the environment. Hence, the organized form of energy (kinetic energy) gained by the car will never be more than that present in the gasoline (chemical energy).
The second law states that the ability to perform work depends upon the amount of organized form of energy present, so more the speed, more will be the amount of fuel burnt and more amount of energy will be lost.
Conclusion:
Therefore, burning of gasoline to gain organized kinetic energy does not contradict second law of thermodynamics.
Want to see more full solutions like this?
Chapter 16 Solutions
College Physics
- 19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning