Concept explainers
(a)
The amount of turpentine overflows when the turpentine and aluminum cylinder are warmed slowly.
(a)
Answer to Problem 19P
The amount of turpentine overflows when the turpentine and aluminum cylinder are warmed slowly is
Explanation of Solution
Write the expression for change in volume when the temperature rises by
Here,
From the equation (I), write the expression for changing volume of the cylinder and the turpentine.
Here,
Substitute,
Conclusion:
Substitute,
Therefore, the amount of turpentine overflows when the turpentine and aluminum cylinder are warmed slowly is
(b)
The volume of the turpentine remaining in the cylinder.
(b)
Answer to Problem 19P
The volume of the turpentine remaining in the cylinder is
Explanation of Solution
The volume of the aluminum cylinder at
Here,
Substitute,
Conclusion:
Substitute,
Therefore, the volume of the turpentine remaining in the cylinder is
(c)
The empty height of the cylinder above the turpentine if the combination with turpentine cooled back to
(c)
Answer to Problem 19P
The empty height of the cylinder above the turpentine if the combination with turpentine cooled back to
Explanation of Solution
Write the expression for volume of the turpentine in the cylinder after it cools back.
Simplify the equation (IV).
Conclusion:
Substitute,
The percentage of cylinder that is empty at
Then the empty height of the cylinder above the turpentine can calculated as follows,
Therefore, the empty height of the cylinder above the turpentine if the combination with turpentine cooled back to
Want to see more full solutions like this?
Chapter 16 Solutions
Principles of Physics: A Calculus-Based Text
- No chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forward
- a cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forward
- 2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forwardFrom number 2 and 3 I just want to show all problems step by step please do not short cut look for formulaarrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning