Concept explainers
Interpretation:
Reason for increase in percent of ionization with increase in dilution has to be determined.
Concept Introduction:
For reversible reaction, rate of forward and reverse reaction become equal at some point in time. Forward
For equilibrium reaction rate of forward reaction is equal to rate of reverse direction. Consider a general reaction that is as follows:
Expression for equilibrium constant is written as follows:
Here,
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
EBK FOUNDATIONS OF COLLEGE CHEMISTRY
- Consider the system 4NH3(g)+3O2(g)2N2(g)+6H2O(l)H=1530.4kJ (a) How will the concentration of ammonia at equilibrium be affected by (1) removing O2(g)? (2) adding N2(g)? (3) adding water? (4) expanding the container? (5) increasing the temperature? (b) Which of the above factors will increase the value of K? Which will decrease it?arrow_forwardWhat is the law of mass action? Is it true that the value of K depends on the amounts of reactants and products mixed together initially? Explain. Is it true that reactions with large equilibrium constant values are very fast? Explain. There is only one value of the equilibrium constant for a particular system at a particular temperature, but there is an infinite number of equilibrium positions. Explain.arrow_forwardCalculate the equilibrium concentrations that result when 0.25 M O2 and 1.0 M HCl react and come to equilibrium. 4HCl(g)+O2(g)2Cl2+2H2O(g)Kc=3.11013arrow_forward
- The value of the equilibrium constant, K, is dependent on which of the following? (There may be more than one answer.) a. the initial concentrations of the reactants b. the initial concentrations of the products c. the temperature of the system d. the nature of the reactants and products Explain.arrow_forwardUse the given Keq value and the terminology in Table 9-2 to describe the relative amounts of reactants and products present in each of the following equilibrium situations. a. 2NO(g)N2(g)+O2(g)Keq(25C)=11030 b. N2(g)+3H2(g)2NH3(g)Keq(25C)=1109 c. PCl5(g)PCl3(g)+Cl2(g)Keq(127C)=1102 d. 2Na2O(s)4Na(l)+O2(g)Keq(427C)=11025arrow_forwardConsider the system 4NH3(g)+3O2(g)2N2(g)+6H2O(l)H=1530.4kJ (a) How will the amount of ammonia at equilibrium be affected by 1. removing O2(g)? 2. adding N2(g)? 3. adding water? 4. expanding the container at constant pressure? 5. increasing the temperature? (b) Which of the above factors will increase the value of K? Which will decrease it?arrow_forward
- Explain that equilibrium is dynamic, and that at equilibrium the forward and backward reaction rates are equal.arrow_forwardBecause calcium carbonate is a sink for CO32- in a lake, the student in Exercise 12.39 decides to go a step further and examine the equilibrium between carbonate ion and CaCOj. The reaction is Ca2+(aq) + COj2_(aq) ** CaCO,(s) The equilibrium constant for this reaction is 2.1 X 10*. If the initial calcium ion concentration is 0.02 AI and the carbonate concentration is 0.03 AI, what are the equilibrium concentrations of the ions? A student is simulating the carbonic acid—hydrogen carbonate equilibrium in a lake: H2COj(aq) H+(aq) + HCO}‘(aq) K = 4.4 X 10"7 She starts with 0.1000 AI carbonic acid. What are the concentrations of all species at equilibrium?arrow_forwardThe creation of shells by mollusk species is a fascinating process. By utilizing the Ca2+ in their food and aqueous environment, as well as some complex equilibrium processes, a hard calcium carbonate shell can be produced. One important equilibrium reaction in this complex process is HCO3(aq)H+(aq)+CO32(aq)K=5.61011 If 0.16 mole of HCO3 is placed into 1.00 L of solution, what will be the equilibrium concentration of CO32?arrow_forward
- How is the strength of an acid related to the position of its ionization equilibrium? Write the equations for the dissociation (ionization) of HCI, HNO3, and HClO4in water. Since all these acids are strong acids, what does this indicate about the basicity of the Cl-, NO3, and ClO4ions? Are aqueous solutions of NaCl, NaNO3, or NaClO4basic?arrow_forward. Explain what it means that a reaction has reached a state of chemical equilibrium. Explain why equilibrium is a dynamic state: Does a reaction really “stop” when the system reaches a state of equilibrium? Explain why, once a chemical system has reached equilibrium, the concentrations of all reactants remain constant with time. Why does this constancy of concentration not contradict our picture of equilibrium as being dynamic? What happens to the rates of the forward and reverse reactions as a system proceeds to equilibrium from a starting point where only reactants are present?arrow_forwardFor the generalized chemical reaction A(g)+B(g)C(g)+D(g) determine whether the concentration of D in an equilibrium mixture will (1) increase, (2) decrease, or (3) not change when each of the following changes is effected. a. concentration of A is increased b. concentration of B is decreased c. concentration of C is increased d. concentration of C is decreasedarrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning