![EBK GET READY FOR ORGANIC CHEMISTRY](https://www.bartleby.com/isbn_cover_images/8220100576379/8220100576379_largeCoverImage.jpg)
Concept explainers
(a)
Interpretation:
How many chemically distinct H atoms are in the given molecule is to be determined.
Concept introduction:
Sometimes, it is not immediately obvious whether certain hydrogen atoms in a molecule are chemically distinct. In such cases, the chemical distinction test is used. Chemical distinction test is a test in which the complete structure of the molecule is to be drawn in which and only the hydrogen atom is replaced by an imaginary “X” atom. There should be one X-substituted molecule for each hydrogen atom being tested. If the chemical distinction test yields enantiomers, then the corresponding hydrogen atoms are said to be enantiotopic. If the test yields diastereomers, then the corresponding hydrogen atoms are said to be diastereotopic.
![Check Mark](/static/check-mark.png)
Answer to Problem 16.8P
There are two types of chemically distinct H atoms in the given molecule.
Explanation of Solution
The given molecule is:
There are five H atoms in the above compound. These H atoms are not easily identified whether they are distinct or similar. Thus, the chemical distinction test is used here.
All H atoms in the compound are replaced by “X”; all possible structures are as shown below:
Molecules I and II are enantiomers i.e. mirror images of each other. According to chemical distinction test, these H atoms are not chemically distinct. Molecules I/II and III are constitutional isomers, these H atoms are chemically distinct. Therefore, there are two distinct types of protons, one for
Number of chemically distinct H atoms in the given molecule is determined using a chemical distinction test.
(b)
Interpretation:
How many chemically distinct H atoms are in the given molecule is to be determined.
Concept introduction:
Sometimes, it is not immediately obvious whether certain hydrogen atoms in a molecule are chemically distinct. In such cases the chemical distinction test is used. Chemical distinction test is a test in which the complete structure of the molecule is to be drawn in which and only the hydrogen atom is replaced by an imaginary “X” atom. There should be one X-substituted molecule for each hydrogen atom being tested. If the chemical distinction test yields enantiomers, then the corresponding hydrogen atoms are said to be enantiotopic. If the test yields diastereomers, then the corresponding hydrogen atoms are said to be diastereotopic.
![Check Mark](/static/check-mark.png)
Answer to Problem 16.8P
There are four types of chemically distinct H atoms in the given molecule.
Explanation of Solution
The given molecule is:
There are six H atoms in the above compound. These H atoms are not easily identified as distinct or similar. Thus, the chemical distinction test is used here.
All H atoms in the compound are replaced by “X”; all possible structures are as shown below:
Molecules I, II/III, IV/V, and VI are constitutional isomers. According to chemical distinction test, these H atoms are chemically distinct. Molecules II and III also IV and V are enantiomers; these H atoms are not chemically distinct according to the test. Thus, there are total four types of chemically distinct protons in the given molecule b.
Number of chemically distinct H atoms in the given molecule are determined using chemical distinction test.
(c)
Interpretation:
How many chemically distinct H atoms are in the given molecule is to be determined.
Concept introduction:
Sometimes, it is not immediately obvious whether certain hydrogen atoms in a molecule are chemically distinct. In such cases the chemical distinction test is used. Chemical distinction test is a test in which the complete structure of the molecule is to be drawn in which and only the hydrogen atom is replaced by an imaginary “X” atom. There should be one X-substituted molecule for each hydrogen atom being tested. If the chemical distinction test yields enantiomers, then the corresponding hydrogen atoms are said to be enantiotopic. If the test yields diastereomers, then the corresponding hydrogen atoms are said to be diastereotopic.
![Check Mark](/static/check-mark.png)
Answer to Problem 16.8P
There are three types of chemically distinct H atoms in the given molecule.
Explanation of Solution
The given molecule is:
There are five H atoms in the above compound. These H atoms are not easily identified as distinct or similar. Thus, the chemical distinction test is used here.
All H atoms in the compound are replaced by “X”; all possible structures are as shown below:
Molecules I and II, and also III and IV are the same molecules. Molecules I/II, III/IV, and V are consititutional isomers. These H atoms are distinct according to the chemical distinction test. Therefore, there are three types of chemically distinct H atoms in the given molecule c.
Number of chemically distinct H atoms in the given molecul, are determined using chemical distinction test.
(d)
Interpretation:
How many chemically distinct H atoms are in the given molecule is to be determined.
Concept introduction:
Sometimes, it is not immediately obvious whether certain hydrogen atoms in a molecule are chemically distinct. In such cases the chemical distinction test is used. Chemical distinction test is a test in which the complete structure of the molecule is to be drawn in which and only the hydrogen atom is replaced by an imaginary “X” atom. There should be one X-substituted molecule for each hydrogen atom being tested. If the chemical distinction test yields enantiomers, then the corresponding hydrogen atoms are said to be enantiotopic. If the test yields diastereomers, then the corresponding hydrogen atoms are said to be diastereotopic.
![Check Mark](/static/check-mark.png)
Answer to Problem 16.8P
There are three types of chemically distinct H atoms in the given molecule.
Explanation of Solution
The given molecule is:
There are four H atoms in the above compound. These H atoms are not easily identified s distinct or similar. Thus, the chemical distinction test is used here.
All H atoms in compound are replaced by “X”; all possible structures are as shown below:
Molecules II and III are the same molecule. Molecules I, II/III and IV are constitutional isomers. According to the chemical distinction test, these H atoms are distinct. Therefore, there are three types of chemically distinct H atoms in the given molecule d.
Number of chemically distinct H atoms in the given molecule is determined using the chemical distinction test.
(e)
Interpretation:
How many chemically distinct H atoms are in the given molecule is to be determined.
Concept introduction:
Sometimes, it is not immediately obvious whether certain hydrogen atoms in a molecule are chemically distinct. In such cases the chemical distinction test is used. Chemical distinction test is a test in which the complete structure of the molecule is to be drawn in which and only the hydrogen atom is replaced by an imaginary “X” atom. There should be one X-substituted molecule for each hydrogen atom being tested. If the chemical distinction test yields enantiomers, then the corresponding hydrogen atoms are said to be enantiotopic. If the test yields diastereomers, then the corresponding hydrogen atoms are said to be diastereotopic.
![Check Mark](/static/check-mark.png)
Answer to Problem 16.8P
There is one type of chemically distinct H atom in the given molecule.
Explanation of Solution
The given molecule is:
There are four H atoms in the above compound. These H atoms are not easily identified as distinct or similar. Thus, the chemical distinction test is used here.
All H atoms in compound are replaced by “X”; all possible structures are as shown below:
All molecules, I, II, III and IV are same. These H atoms are not distinct according to the chemical distinction test. Therefore, there is only one type of chemically distinct H atoms in the given molecule e.
Number of chemically distinct H atoms in the given molecule is determined using chemical distinction test.
(f)
Interpretation:
How many chemically distinct H atoms are in the given molecule is to be determined.
Concept introduction:
Sometimes, it is not immediately obvious whether certain hydrogen atoms in a molecule are chemically distinct. In such cases the chemical distinction test is used. Chemical distinction test is a test in which the complete structure of the molecule is to be drawn in which and only the hydrogen atom is replaced by an imaginary “X” atom. There should be one X-substituted molecule for each hydrogen atom being tested. If the chemical distinction test yields enantiomers, then the corresponding hydrogen atoms are said to be enantiotopic. If the test yields diastereomers, then the corresponding hydrogen atoms are said to be diastereotopic.
![Check Mark](/static/check-mark.png)
Answer to Problem 16.8P
There are three types of chemically distinct H atoms in the given molecule.
Explanation of Solution
The given molecule is:
There are five H atoms in the above compound. These H atoms are not easily identified as distinct or similar. Thus, the chemical distinction test is used here.
All H atoms in compound are replaced by “X”; all possible structures are as shown below:
Molecules I and II, and also III and IV are the same molecule. Molecules I/II and III/IV are constitutional isomers. According to the chemical distinction test, these H atoms are chemically distinct. Therefore, there are three types of chemically distinct H atoms, two from the
Number of chemically distinct H atoms in the given molecule is determined using chemical distinction test.
Want to see more full solutions like this?
Chapter 16 Solutions
EBK GET READY FOR ORGANIC CHEMISTRY
- 16. The proton NMR spectral information shown in this problem is for a compound with formula CioH,N. Expansions are shown for the region from 8.7 to 7.0 ppm. The normal carbon-13 spec- tral results, including DEPT-135 and DEPT-90 results, are tabulated: 7 J Normal Carbon DEPT-135 DEPT-90 19 ppm Positive No peak 122 Positive Positive cus и 124 Positive Positive 126 Positive Positive 128 No peak No peak 4° 129 Positive Positive 130 Positive Positive (144 No peak No peak 148 No peak No peak 150 Positive Positive してしarrow_forward3. Propose a synthesis for the following transformation. Do not draw an arrow-pushing mechanism below, but make sure to draw the product of each proposed step (3 points). + En CN CNarrow_forwardShow work..don't give Ai generated solution...arrow_forward
- Label the spectrum with spectroscopyarrow_forwardQ1: Draw the most stable and the least stable Newman projections about the C2-C3 bond for each of the following isomers (A-C). Are the barriers to rotation identical for enantiomers A and B? How about the diastereomers (A versus C or B versus C)? enantiomers H Br H Br (S) CH3 H3C (S) (R) CH3 H3C H Br A Br H C H Br H3C (R) B (R)CH3 H Br H Br H3C (R) (S) CH3 Br H D identicalarrow_forwardLabel the spectrumarrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780618974122/9780618974122_smallCoverImage.gif)