DATA Supernova! (a) Equation (16.30) can be written as f R = f S ( 1 − υ c ) 1 / 2 ( 1 + υ c ) − 1 / 2 where c is the speed of light in vacuum, 3.00 × 10 8 m/s. Most objects move much slower than this ( υ / c is very small), so calculations made with Eq. (16.30) must be done carefully to avoid rounding errors. Use the binomial theorem to show that if υ ≪ c , Eq. (16.30) approximately reduces to f R = f S [1 − ( υ / c )] . (b) The gas cloud known as the Crab Nebula can be seen with even a small telescope. It is the remnant of a supernova, a cataclysmic explosion of a star. (The explosion was seen on the earth on July 4, 1054 C.E.) Its streamers glow with the characteristic red color of heated hydrogen gas. In a laboratory on the earth, heated hydrogen produces red light with frequency 4.568 × 10 14 Hz; the red light received from streamers in the Crab Nebula that are pointed toward the earth has frequency 4.586 × 10 14 Hz. Estimate the speed with which the outer edges of the Crab Nebula are expanding. Assume that the speed of the center of the nebula relative to the earth is negligible. (c) Assuming that the expansion speed of the Crab Nebula has been constant since the supernova that produced it, estimate the diameter of the Crab Nebula. Give your answer in meters and in light-years. (d) The angular diameter of the Crab Nebula as seen from the earth is about 5 arc-minutes ( 1 arc-minute = 1 60 degree ). Estimate the distance (in light-years) to the Crab Nebula, and estimate the year in which the supernova actually took place.
DATA Supernova! (a) Equation (16.30) can be written as f R = f S ( 1 − υ c ) 1 / 2 ( 1 + υ c ) − 1 / 2 where c is the speed of light in vacuum, 3.00 × 10 8 m/s. Most objects move much slower than this ( υ / c is very small), so calculations made with Eq. (16.30) must be done carefully to avoid rounding errors. Use the binomial theorem to show that if υ ≪ c , Eq. (16.30) approximately reduces to f R = f S [1 − ( υ / c )] . (b) The gas cloud known as the Crab Nebula can be seen with even a small telescope. It is the remnant of a supernova, a cataclysmic explosion of a star. (The explosion was seen on the earth on July 4, 1054 C.E.) Its streamers glow with the characteristic red color of heated hydrogen gas. In a laboratory on the earth, heated hydrogen produces red light with frequency 4.568 × 10 14 Hz; the red light received from streamers in the Crab Nebula that are pointed toward the earth has frequency 4.586 × 10 14 Hz. Estimate the speed with which the outer edges of the Crab Nebula are expanding. Assume that the speed of the center of the nebula relative to the earth is negligible. (c) Assuming that the expansion speed of the Crab Nebula has been constant since the supernova that produced it, estimate the diameter of the Crab Nebula. Give your answer in meters and in light-years. (d) The angular diameter of the Crab Nebula as seen from the earth is about 5 arc-minutes ( 1 arc-minute = 1 60 degree ). Estimate the distance (in light-years) to the Crab Nebula, and estimate the year in which the supernova actually took place.
DATA Supernova! (a) Equation (16.30) can be written as
f
R
=
f
S
(
1
−
υ
c
)
1
/
2
(
1
+
υ
c
)
−
1
/
2
where c is the speed of light in vacuum, 3.00 × 108 m/s. Most objects move much slower than this (υ/c is very small), so calculations made with Eq. (16.30) must be done carefully to avoid rounding errors. Use the binomial theorem to show that if υ ≪ c, Eq. (16.30) approximately reduces to fR= fS [1 − (υ/c)]. (b) The gas cloud known as the Crab Nebula can be seen with even a small telescope. It is the remnant of a supernova, a cataclysmic explosion of a star. (The explosion was seen on the earth on July 4, 1054 C.E.) Its streamers glow with the characteristic red color of heated hydrogen gas. In a laboratory on the earth, heated hydrogen produces red light with frequency 4.568 × 1014 Hz; the red light received from streamers in the Crab Nebula that are pointed toward the earth has frequency 4.586 × 1014 Hz. Estimate the speed with which the outer edges of the Crab Nebula are expanding. Assume that the speed of the center of the nebula relative to the earth is negligible. (c) Assuming that the expansion speed of the Crab Nebula has been constant since the supernova that produced it, estimate the diameter of the Crab Nebula. Give your answer in meters and in light-years. (d) The angular diameter of the Crab Nebula as seen from the earth is about 5 arc-minutes ( 1 arc-minute =
1
60
degree ). Estimate the distance (in light-years) to the Crab Nebula, and estimate the year in which the supernova actually took place.
A ball is thrown with an initial speed v, at an angle 6, with the horizontal. The horizontal range of the ball is R, and the ball reaches a maximum height R/4. In terms of R and g, find the following.
(a) the time interval during which the ball is in motion
2R
(b) the ball's speed at the peak of its path
v=
Rg 2
√ sin 26, V 3
(c) the initial vertical component of its velocity
Rg
sin ei
sin 20
(d) its initial speed
Rg
√ sin 20
×
(e) the angle 6, expressed in terms of arctan of a fraction.
1
(f) Suppose the ball is thrown at the same initial speed found in (d) but at the angle appropriate for reaching the greatest height that it can. Find this height.
hmax
R2
(g) Suppose the ball is thrown at the same initial speed but at the angle for greatest possible range. Find this maximum horizontal range.
Xmax
R√3
2
An outfielder throws a baseball to his catcher in an attempt to throw out a runner at home plate. The ball bounces once before reaching the catcher. Assume the angle at which the bounced ball leaves the ground is the same as the angle at which the outfielder threw it as shown in the figure, but that the ball's speed after the bounce is one-half of what it was before the bounce.
8
(a) Assuming the ball is always thrown with the same initial speed, at what angle & should the fielder throw the ball to make it go the same distance D with one bounce (blue path) as a ball thrown upward at 35.0° with no bounce (green path)?
24
(b) Determine the ratio of the time interval for the one-bounce throw to the flight time for the no-bounce throw.
Cone-bounce
no-bounce
0.940
Chapter 16 Solutions
Mastering Physics with Pearson eText -- Standalone Access Card -- for University Physics with Modern Physics (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.