Applied Statics and Strength of Materials (6th Edition)
6th Edition
ISBN: 9780133840544
Author: George F. Limbrunner, Craig D'Allaird, Leonard Spiegel
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 16.4P
Select the lightest W shape to support a concentrated load of 100 kN placed at midspan. The beam is on a simple span of 10 m. Deflection is not to exceed span/240. Neglect beam weight.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Compute the initial deflection of the beam at midspan under service loads with the following specifications: f'c = 4000 psi, 36-inch height, depth of rebar assumed to be 3 inches less than the height, 16-inch width, 4 #9 bars (tension), Grade 60 rebar, 30' clear spans, service loads of: DL = 0.25k/ft, LL = 1.2k/ft.
The DL does NOT include self-weight of the beam or of the precast concrete deck planks that have a weight of 60 PSF. The beam picks up a tributary width of 12 feet. Also, note that this beam is continuous and is the middle beam of 5 equal spans.
Check the initial deflections against the ACI deflection requirements. Then calculate the long-term deflections and check those against the ACI requirements. For both situations, assume that finish materials will be attached to the beam.
Last: Instead of performing a structural analysis to determine the maximum deflection in the beam, conservatively figure that the maximum deflection will be 60% of what it would have been for a…
3. Calculate the slope and deflection at the 60-kNm couple on the structure shown in the
accompanying illustration.
Use: a. Moment Area Method,
b. Conjugate Beam Method
4 kN/m
Fixed
Hinge
60 kNm
5 m
-5 m
5 m
-5m
I=1.46 x 10° mm". E=200000MPa
Activate Windows
so to Settings to activate W ndows.
The cantilever beam will experience sagging bending moment when it is subjected to UDL for
entire span.
Select one:
O True
O False
Chapter 16 Solutions
Applied Statics and Strength of Materials (6th Edition)
Ch. 16 - Prob. 16.1PCh. 16 - A simply supported beam is to support a uniformly...Ch. 16 - Rework Problem 16.1 given a load of 1.0 kip/ft and...Ch. 16 - Select the lightest W shape to support a...Ch. 16 - Select the lightest W shape to support a...Ch. 16 - 16.6 A simply supported beam is to span 15 ft. It...Ch. 16 - 16.7 A simply supported beam is to span 24 ft. It...Ch. 16 - 16.8 Design a timber beam of hem-fir (S4S) to...Ch. 16 - Select simply supported timber beams (S4S) for the...Ch. 16 - 16.10 Select a southern pine (S4S) timber beam for...
Ch. 16 - 16.11 Select simply supported hem-fir (S4S) joists...Ch. 16 - Design simply supported timber beams (S4S) for the...Ch. 16 - For the following computer problems, any...Ch. 16 - 16.16 Select the lightest W shape to support a...Ch. 16 - 16.17 Select the lightest W shape for the beam...Ch. 16 - Select the lightest W shape for the cantilever...Ch. 16 - 16.19 Select the lightest W shape to support a...Ch. 16 - 16.20 Select the lightest W shape for the beams...Ch. 16 - 16.21 The structural steel floor system shown is...Ch. 16 - 16.22 The structural steel framing plan shown...Ch. 16 - 16.23 Select the lightest steel wide-flange...Ch. 16 - 16.24 Select the lightest steel wide-flange...Ch. 16 - 16.25 Design the lightest W-shape beams to support...Ch. 16 - 16.26 In Problem 16.18, assume that the 500 lb/ft...Ch. 16 - 16.27 Select a southern pine (S4S) simply...Ch. 16 - 16.28 A redwood beam is to support a uniformly...Ch. 16 - 16.29 A partial plan view for a residential floor...Ch. 16 - 16.30 For the floor framing of Problem 16.29,...Ch. 16 - 16.31 Select a Douglas fir (S4S) beam for the...Ch. 16 - 16.32 Select southern pine (S4S) simply supported...Ch. 16 - 16.33 Rework Problem 16.32 using joists spaced 12...Ch. 16 - 16.34 Select Douglas fir (S4S) simply supported...Ch. 16 - 16.35 Select southern pine (S4S) simply supported...Ch. 16 - 16.36 A 15-ft-span simply supported hem-fir (S4S)...Ch. 16 - 16.37 Select a timber beam (S4S) of Southern pine...Ch. 16 - 16.38 A series of 14-ft-long Douglas fir (S4S)...Ch. 16 - 16.39 A cantilever beam 3 m long is to be made...Ch. 16 - 16.40 Select an eastern white pine (S4S) beam for...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A round shaft having a diameter of 32 mm is 700 mm long and carries a 3.0 kN load at its center. If the shaft is steel and simply supported at its ends, compute the deflection at the center.arrow_forward(use EI constant for whole span). A 10-meter-span, propped beam (fixed at the left support and roller at right support), with a uniformly distributed load from left support to six meters to the right, with a magnitude of six kilonewton per lineal meter, a downward concentrated load at the midspan. Solve the reactions at the fixed support and roller support, slope and deflection at the roller support, using Area Moment Method. Use the concentrated load as 24 kN.arrow_forwardCalculate the bending moment for the fire design in the center of 5 m span if the strip of slab is 1 m wide. The factored load for fire design is 4.2 kN/m2. Select one: O a. 13.12 kNm O b. 12.75 kNm O c. 8.14 kNm Od. 15.86 kNmarrow_forward
- A Simply supported beam of effective span 6 m carries three point loads of 30 KN, 25 KN and 40 KN at 1m, 3m and 4.5m respectively from the left support. Draw the SFD and BMD. Indicating values at salient points.arrow_forwardA beam ABCDE is simply supported at A and D. It carries the following loading: a distributed load of 30 kN/m between A and B; a concentrated load of 20 kN at B; a concentrated load of 20 kN at C; a concentrated load of 10 kN at E; a distributed load of 60 kN/m between D and E. Span AB=1.5 m BC=CD=DE=1 m. A. Draw the FBD B. Calculate the value of the reactions at A and D and hence draw the S.F. and B.M. diagrams. C. What are the magnitude and position of the maximum B.M. on the beam?arrow_forward1. Determine the hinge reactions (in kN) at point B for the beam shown. ( Show COMPLETE solutions in all the problems. FREE BODY DIAGRAMS ARE REQUIRED FOR EVERY PROBLEM BEFORE NUMERICAL SOLUTIONS. )arrow_forward
- Please draw by deriving SF and BM equations for each sections.Draw a labelled diagram mentioning valus at key points. Thank youarrow_forwardCompute reactions at support for overhanging beam as shown in figure. Then, draw SFD and BMD using semi graphical method.arrow_forwardFor the beam and loading shown, use discontinuity functions to compute: (a) the deflection VA of the beam at A, and (b) the deflection Vmidspan of the beam at midspan (i.e., x = 2.45 m). Assume a constant value of El = 1270 kN-m² for the beam; M₁ = 9 kN-m, wo = 19.8 kN/m, LAB = 1.1 m, LBc = 2.7 m. MA A Answer: (a) VA = (b) Vmid i LAB i Wo B LBC mm. mm.arrow_forward
- Calculate the slope at C using ONE of these methods: double integration method, area-moment and conjugate beam method. Also, determine the deflection at C using EITHER virtual work method or Castigliano theorem method. Set P = 10 kN, w = 2 kN/m, support A is pin and support B is roller. ... 1 marrow_forwardNote:- • Do not provide handwritten solution. Maintain accuracy and quality in your answer. Take care of plagiarism. • Answer completely. • You will get up vote for sure.arrow_forwardCalculate the support reactions at A and B for the loaded beam. 111 lb/ft B 2.4' 4.9' 125 lb Answers Ax Ib Ay Ib By Ibarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types Of loads - Engineering Mechanics | Abhishek Explained; Author: Prime Course;https://www.youtube.com/watch?v=4JVoL9wb5yM;License: Standard YouTube License, CC-BY