Organic Chemistry (9th Edition)
Organic Chemistry (9th Edition)
9th Edition
ISBN: 9780321971371
Author: Leroy G. Wade, Jan W. Simek
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 16, Problem 16.33SP

Azulene is a deep-blue hydrocarbon with resonance energy of 205 kJ/mol (49 kcal/mol). Azulene has ten pi electrons, so it might be considered as one large aromatic ring. Its electrostatic potential map shows one ring to be highly electron-rich (red) and the other to be electron-poor (blue). The dipole moment is unusually large (1.0 D) for a hydrocarbon. Show how this charge separation might arise.

Chapter 16, Problem 16.33SP, Azulene is a deep-blue hydrocarbon with resonance energy of 205 kJ/mol (49 kcal/mol). Azulene has

Blurred answer
Students have asked these similar questions
3) In the mid-1930s, the German theoretical chemist Erich Hückel developed a rule that dealt with the aromaticity of various compounds, which became known as the Hückel Rule. Which (parts) of the compounds listed below are aromatic? Justify your answer based on Hückel's rule. You can treat the rings separately or together as you wish.image iv: colchicine: a highly poisonous alkaloid,obtained from autumn turmeric and used to treat gout.
The compound shown reacts readily with HBr and adds water across at least of one of its double bonds. Why doesn't it behave like Benzene? 1. It is NOT a 4n + 2 system 2. severe steric interactions prevent it from being flat 3. It does NOT have a continous array of p orbitals to overlap 4. There are too many pi bonds to be aromatic
(b) The structure of heptalene (2E) is shown below. Answer the following questions: (i) Is heptalene aromatic, non-aromatic, or anti-aromatic? (ii) 2E can be readily protonated to form a more stable species. Draw the structure of the protonated 2E and explain the stability. heptalene (2E)

Chapter 16 Solutions

Organic Chemistry (9th Edition)

Ch. 16.8A - Repeat Problem16-10 for the cyclopentadienyl ions....Ch. 16.8C - Explain why each compound or ion should be...Ch. 16.8C - The following hydrocarbon has an unusually large...Ch. 16.8C - Prob. 16.14PCh. 16.8C - Prob. 16.15PCh. 16.9B - Prob. 16.16PCh. 16.9C - Show which of the nitrogen atoms in purine are...Ch. 16.9C - The proton NMR spectrum of 2-pyridone gives the...Ch. 16.9D - Prob. 16.19PCh. 16.9D - Prob. 16.20PCh. 16.10 - Prob. 16.21PCh. 16.12 - Ciprofloxacin is a member of the fluoroquinolone...Ch. 16.13 - Draw and name all the chlorinated benzenes having...Ch. 16.13 - Name the following compounds:Ch. 16.15 - The UV spectrum of 1-phenylprop-2-en-1-ol shows an...Ch. 16 - Prob. 16.26SPCh. 16 - Name the following compounds:Ch. 16 - Draw and name all the methyl, dimethyl, and...Ch. 16 - Four pairs of compounds are shown. In each pair,...Ch. 16 - One of the following hydrocarbons is much more...Ch. 16 - In Kekuls time cyclohexane was unknown, and there...Ch. 16 - Prob. 16.32SPCh. 16 - Azulene is a deep-blue hydrocarbon with resonance...Ch. 16 - Prob. 16.34SPCh. 16 - Prob. 16.35SPCh. 16 - Prob. 16.36SPCh. 16 - Prob. 16.37SPCh. 16 - Prob. 16.38SPCh. 16 - Prob. 16.39SPCh. 16 - Biphenyl has the following structure. a. Is...Ch. 16 - Anions of hydrocarbons are rare, and dianions of...Ch. 16 - How would you convert the following compounds to...Ch. 16 - Prob. 16.43SPCh. 16 - Prob. 16.44SPCh. 16 - A student found an old bottle labeled thymol on...Ch. 16 - Prob. 16.46SPCh. 16 - Prob. 16.47SPCh. 16 - Prob. 16.48SPCh. 16 - The proton NMR chemical shifts of the hydrogens in...Ch. 16 - Prob. 16.50SPCh. 16 - NMR has been used to probe many molecular...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305580350
    Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
    Publisher:Cengage Learning
    Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305080485
    Author:John E. McMurry
    Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
How to Design a Total Synthesis; Author: Chemistry Unleashed;https://www.youtube.com/watch?v=9jRfAJJO7mM;License: Standard YouTube License, CC-BY