
Interpretation:
The difference between a magnetic field vector and a magnetic dipole vector is to be stated.
Concept introduction:
The region around the magnet that exerts a magnetic force is known as a magnetic field. Magnetic fields are produced by moving charged particles. These are produced around currents, electric fields, and dipoles.

Answer to Problem 16.1E
Magnetic field vector is the field produced when an
Explanation of Solution
The quantities that are expressed in terms of both magnitude, as well as direction, are known as vector quantities. The magnetic force exerted around a magnet is known as a magnetic field. The charged particles that are in motion produce a magnetic field. Any point in a magnetic field can be described in terms of its magnitude as well as the direction of the field. A current carrying wire produces magnetic field lines in the form of circles which have the same center. These circular vectors are in the form of a cylinder that has its center at the wire. Then the right-hand thumb rule gives the relation between the direction of the electric current and the direction of the magnetic field lines. According to this rule, if the thumb points towards the direction of the electric current, the direction of the fingers that are wrapped around the wire shows the direction of the field lines. If an electric charge flows around a loop, then a magnetic effect is produced. This magnetic effect is known as a magnetic dipole. Any point in a magnetic dipole can be described in terms of its magnitude as well as its direction. It corresponds to a magnetic dipole vector. Since it consists of opposite magnetic poles, it is known as a dipole.
Magnetic field vector is the field produced when an electric current passes through a current carrying wire whereas a magnetic dipole vector is a magnetic force that is produced when an electric current passes through a loop that carries current.
Want to see more full solutions like this?
Chapter 16 Solutions
Physical Chemistry
- Construct a molecular orbital energy-level diagram for BeH2. Sketch the MO pictures (schematic representation) for the HOMO and LUMO of BeH2 [Orbital Potential Energies, H (1s): -13.6 eV; Be (2s): -9.3 eV, Be (2p): -6.0 eV]arrow_forwardIndicate the isomers of the A(H2O)6Cl3 complex. State the type of isomerism they exhibit and explain it briefly.arrow_forwardState the formula of the compound potassium μ-dihydroxydicobaltate (III) tetraoxalate.arrow_forward
- Consider the reaction of the cyclopentanone derivative shown below. i) NaOCH2CH3 CH3CH2OH, 25°C ii) CH3!arrow_forwardWhat constitutes a 'reference material', and why does its utilization play a critical role in the chemical analysis of food products? Provide examples.arrow_forwardExplain what calibration is and why it is essential in relation to food analysis. Provide examples.arrow_forward
- The cobalt mu-hydroxide complex cobaltate(III) of potassium is a dinuclear complex. Correct?arrow_forwardThe cobalt mi-hydroxide complex cobaltate(III) of potassium is a dinuclear complex. Correct?arrow_forward3. Arrange the different acids in Exercise B # 2 from the strongest (1) to the weakest acid (10). 1. 2. (strongest) 3. 4. 5. 6. 7. 8. 9. 10 10. (weakest)arrow_forward
- Name Section Score Date EXERCISE B pH, pOH, pка, AND PKD CALCULATIONS 1. Complete the following table. Solution [H+] [OH-] PH РОН Nature of Solution A 2 x 10-8 M B 1 x 10-7 M C D 12.3 6.8 2. The following table contains the names, formulas, ka or pka for some common acids. Fill in the blanks in the table. (17 Points) Acid Name Formula Dissociation reaction Ka pka Phosphoric acid H₂PO₁ H3PO4 H++ H₂PO 7.08 x 10-3 Dihydrogen H₂PO H₂PO H+ HPO 6.31 x 10-6 phosphate Hydrogen HPO₁ 12.4 phosphate Carbonic acid H2CO3 Hydrogen HCO 6.35 10.3 carbonate or bicarbonate Acetic acid CH,COOH 4.76 Lactic acid CH₂CHOH- COOH 1.38 x 10 Ammonium NH 5.63 x 10-10 Phenol CH₂OH 1 x 10-10 Protonated form CH3NH3* 3.16 x 10-11 of methylaminearrow_forwardIndicate whether it is true that Co(III) complexes are very stable.arrow_forwardMnO2 acts as an oxidant in the chlorine synthesis reaction.arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning


