Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 16.1CQ
To determine
The reason that a solid substance able to transport both longitudinal waves and transverse waves, but a homogenous fluid able to transport only longitudinal waves.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In 150 to 200 words
A solid can transport both longitudinal waves and transverse waves, but a fluid can transport only longitudinal waves. Why?
6.4.7C. For the oblique reflection of a plane wave at a fluid-fluid interface, plot the
magnitude and phase of the pressure reflection coefficient as a function of 6; for
(a) r2/r
(c) r2/r1
0.5 and c2/c
1.5 and c2/C1 = 0.5, 1, 1.5.
0.5, 1, 1.5; (b) r2/T1
= 1 and cz/C1 = 0.5, 1, 1.5; and
%3!
%3D
%3D
A cork on the surface of a pond bobs up and down two times per second on ripples having a wavelength of 7.40 cm. If the cork is 12.5 m from shore, how long does it take a ripple passing the cork to reach the shore? s
Chapter 16 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 16 - Prob. 16.1QQCh. 16 - A sinusoidal wave of frequency f is traveling...Ch. 16 - The amplitude of a wave is doubled, with no other...Ch. 16 - Suppose you create a pulse by moving the free end...Ch. 16 - Which of the following, taken by itself, would be...Ch. 16 - If one end of a heavy rope is attached to one end...Ch. 16 - Prob. 16.2OQCh. 16 - Rank the waves represented by the following...Ch. 16 - By what factor would von have to multiply the...Ch. 16 - When all the strings on a guitar (Fig. OQ16.5) are...
Ch. 16 - Which of the following statements is not...Ch. 16 - Prob. 16.7OQCh. 16 - Prob. 16.8OQCh. 16 - The distance between two successive peaks of a...Ch. 16 - Prob. 16.1CQCh. 16 - (a) How would you create a longitudinal wave in a...Ch. 16 - When a pulse travels on a taut string, does it...Ch. 16 - Prob. 16.4CQCh. 16 - If you steadily shake one end of a taut rope three...Ch. 16 - (a) If a long rope is hung from a ceiling and...Ch. 16 - Why is a pulse on a string considered to be...Ch. 16 - Does the vertical speed of an element of a...Ch. 16 - In an earthquake, both S (transverse) and P...Ch. 16 - A seismographic station receives S and P waves...Ch. 16 - Ocean waves with a crest-to-crest distance of 10.0...Ch. 16 - At t = 0, a transverse pulse in a wire is...Ch. 16 - Two points A and B on the surface of the Earth are...Ch. 16 - A wave is described by y = 0.020 0 sin (kx - t),...Ch. 16 - A certain uniform string is held under constant...Ch. 16 - A sinusoidal wave is traveling along a rope. The...Ch. 16 - For a certain transverse wave, the distance...Ch. 16 - Prob. 16.9PCh. 16 - When a particular wire is vibrating with a...Ch. 16 - The string shown in Figure P16.11 is driven at a...Ch. 16 - Consider the sinusoidal wave of Example 16.2 with...Ch. 16 - Prob. 16.13PCh. 16 - (a) Plot y versus t at x = 0 for a sinusoidal wave...Ch. 16 - A transverse wave on a siring is described by the...Ch. 16 - A wave on a string is described by the wave...Ch. 16 - A sinusoidal wave is described by the wave...Ch. 16 - A sinusoidal wave traveling in the negative x...Ch. 16 - (a) Write the expression for y as a function of x...Ch. 16 - A transverse sinusoidal wave on a string has a...Ch. 16 - Review. The elastic limit of a steel wire is 2.70 ...Ch. 16 - A piano siring having a mass per unit length equal...Ch. 16 - Transverse waves travel with a speed of 20.0 m/s...Ch. 16 - A student taking a quiz finds on a reference sheet...Ch. 16 - An Ethernet cable is 4.00 in long. The cable has a...Ch. 16 - A transverse traveling wave on a taut wire has an...Ch. 16 - A steel wire of length 30.0 m and a copper wire of...Ch. 16 - Why is the following situation impossible? An...Ch. 16 - Tension is maintained in a string as in Figure...Ch. 16 - Review. A light string with a mass per unit length...Ch. 16 - Prob. 16.31PCh. 16 - In a region far from the epicenter of an...Ch. 16 - Transverse waves are being generated on a rope...Ch. 16 - Sinusoidal waves 5.00 cm in amplitude are to be...Ch. 16 - A sinusoidal wave on a string is described by die...Ch. 16 - A taut tope has a mass of 0.180 kg and a length...Ch. 16 - A long string carries a wave; a 6.00-m segment of...Ch. 16 - A horizontal string can transmit a maximum power...Ch. 16 - The wave function for a wave on a taut siring is...Ch. 16 - A two-dimensional water wave spreads in circular...Ch. 16 - Prob. 16.41PCh. 16 - Prob. 16.42PCh. 16 - Show that the wave function y = eb(x vt) is a...Ch. 16 - Prob. 16.44PCh. 16 - Prob. 16.45APCh. 16 - The wave is a particular type of pulse that can...Ch. 16 - A sinusoidal wave in a rope is described by the...Ch. 16 - The ocean floor in underlain by a layer of basalt...Ch. 16 - Review. A 2.00-kg I Jock hangs from a rubber cord,...Ch. 16 - Review. A block of mass M hangs from a rubber...Ch. 16 - A transverse wave on a sting described by the wave...Ch. 16 - A sinusoidal wave in a string is described by the...Ch. 16 - Review. A block of mass M, supported by a string,...Ch. 16 - An undersea earthquake or a landslide can produce...Ch. 16 - Review. A block of mass M = 0.450 kg is attached...Ch. 16 - Review. A block of mass M = 0.450 kg is attached...Ch. 16 - Prob. 16.57APCh. 16 - Prob. 16.58APCh. 16 - A wire of density is tapered so that its...Ch. 16 - A rope of total mass m and length L is suspended...Ch. 16 - Prob. 16.61APCh. 16 - Prob. 16.62APCh. 16 - Review. An aluminum wire is held between two...Ch. 16 - Assume an object of mass M is suspended from the...Ch. 16 - Prob. 16.65CPCh. 16 - A string on a musical instrument is held under...Ch. 16 - If a loop of chain is spun at high speed, it can...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardYou are working for a plumber who is laying very long sections of copper pipe for a large building project. He spends a lot of time measuring the lengths of the sections with a measuring tape. You suggest a faster way to measure the length. You know that the speed of a one-dimensional compressional wave traveling along a copper pipe is 3.56 km/s. You suggest that a worker give a sharp hammer blow at one end of the pipe. Using an oscilloscope app on your smartphone, you will measure the time interval t between the arrival of the two sound waves due to the blow: one through the 20.0C air and the other through the pipe. (a) To measure the length, you must derive an equation that relates the length L of the pipe numerically to the time interval t. (b) You measure a time interval of t = 127 ms between the arrivals of the pulses and, from this value, determine the length of the pipe. (c) Your smartphone app claims an accuracy of 1.0% in measuring time intervals. So you calculate by how many centimeters your calculation of the length might be in error.arrow_forwardA speaker is placed at the opening of a long horizontal tube. The speaker oscillates at a frequency of f, creating a sound wave that moves down the tube. The wave moves through the tube at a speed of v=340.00 m/s. The sound wave is modeled with the wave function s(x,t)=smaxcos(kxt+) . At time t=0.00 s , an air molecule at x=2.3 m is at the maximum displacement of 6.34 nm. At the same time, another molecule at x=2.7 m has a displacement of 2.30 nm. What is the wave function of the sound wave, that is, find the wave number, angular frequency, and the initial phase shift?arrow_forward
- Consider a sound wave moving through the air modeled with the equation s(x,t)=6.00nmcos(54.93m1x18.84103s1t) . What is the shortest time required for an air molecule to move between 3.00 nm and -3.00 nm?arrow_forwardSubmarine A travels horizontally at 11.0 m/s through ocean water. It emits a sonar signal of frequency f = 5.27 103 Hz in the forward direction. Submarine B is in front of submarine A and traveling at 3.00 m/s relative to the water in the same direction as submarine A. A crewman in submarine B uses his equipment to detect the sound waves (pings) from submarine A. We wish to determine what is heard by the crewman in submarine B. (a) An observer on which submarine detects a frequency f as described by Equation 16.46? (b) In Equation 16.46, should the sign of vs be positive or negative? (c) In Equation 16.46, should the sign of vo be positive or negative? (d) In Equation 16.46, what speed of sound should be used? (e) Find the frequency of the sound detected by the crewman on submarine B.arrow_forwardA speaker is placed at the opening of a long horizontal tube. The speaker oscillates at a frequency f, creating a sound wave that moves down the tube. The wave moves through the tube at a speed of v=340.00 m/s. The sound wave is modeled with the wave function s(x,t)=smaxcos(kxt+) . At time t=0.00 s , an air molecule at x=3.5 m is at the maximum displacement of 7.00 nm. At the same time, another molecule at x=3.7 m has a displacement of 3.00 nm. What is the frequency at which the speaker is oscillating?arrow_forward
- A cable with a linear density of =0.2 kg/m is hung from telephone poles. The tension in the cable is 500.00 N. The distance between poles is 20 meters. The wind blows across the line, causing the cable resonate. A standing waves pattern is produced that has 4.5 wavelengths between the two poles. The air temperature is T=20C . What are the frequency and wavelength of the hum?arrow_forwardDuring a 4th of July celebration, an M80 firework explodes on the ground, producing a bright flash and a loud bang. The air temperature of the night air is TF=90.00F . Two observers see the flash and hear the bang. The first observer notes the time between the flash and the bang as 1.00 second. The second observer notes the difference as 3.00 seconds. The line of sight between the two observers meet at a right angle as shown below. What is the distance x between the two observers?arrow_forwardTwo sinusoidal waves with identical wavelengths and amplitudes travel in opposite directions along a string producing a standing wave. The linear mass density of the string is =0.075 kg/m and the tension in the string is FT=5.00 N. The time interval between instances of total destructive interference is t=0.13 s. What is the wavelength of the waves?arrow_forward
- Sound waves can be modeled as a change in pressure. Why is the change in pressure used and not the actual pressure?arrow_forwardAs shown in Figure P14.37, water is pumped into a tall, vertical cylinder at a volume flow rate R. The radius of the cylinder is r, and at the open top of the cylinder a tuning fork is vibrating with a frequency f. As the water rises, what time interval elapses between successive resonances? Figure P14.37 Problems 37 and 38.arrow_forwardA copper wire has a radius of 200 µ m and a length of 5.0 m. The wire is placed under a tension of 3000 N and the wire stretches by a small amount. The wire is plucked and a pulse travels down the wire. What is the propagation speed of the pulse? (Assume the temperature does not change: (=8.96gcm3,Y=1.11011Nm) .)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning