Concept explainers
Figure 16.21 shows a continuous foundation with a width of 1.8 m constructed at a depth of 1.2 m in a granular soil. The footing is subjected to an eccentrically inclined loading with e = 0.3 m, and α = 10°. Determine the gross ultimate load, Qu(ei), that the footing can support using:
- a. Meyerhof (1963) method [Eq. (16.52)]
- b. Saran and Agarwal (1991) method [Eq. (16.53)]
- c. Patra et al. (2012) reduction factor method [Eq. (16.54)]
(a)
The gross ultimate load
Answer to Problem 16.19P
The gross ultimate load
Explanation of Solution
Given information:
The unit weight of the soil
The value of cohesion
The soil friction angle
The location of depth of footing base
The width of the footing B is 1.8 m.
The value of eccentricity e is 0.3 m.
The inclined angle
Calculation:
Determine the effective width of the footing using the relation.
Substitute 1.8 m for B and 0.3 for e.
For the continuous foundation, all shape factors are equal to one
Determine the depth factor
Substitute 1.2 m for
Determine the depth factor
Substitute
Determine the inclination factor
Substitute
Determine the inclination factor
Substitute
Determine the ultimate bearing capacity of the soil
Here,
Refer Table 16.2, “Bearing-capacity factors
For
The values of
Substitute 0 for
Determine the gross ultimate load
Substitute
Therefore, the gross ultimate load
(b)
The gross ultimate load
Answer to Problem 16.19P
The gross ultimate load
Explanation of Solution
Given information:
The unit weight of the soil
The value of cohesion
The soil friction angle
The location of depth of footing base
The width of the footing B is 1.8 m.
The value of eccentricity e is 0.3 m.
The inclined angle
Calculation:
Determine the ratio of
Substitute 0.3 for e and 1.8 m for B.
Determine the gross ultimate load
Here,
Refer Figure 16.14, “Variation of
Take the
Refer Figure 16.15, “Variation of
Take the
Refer Figure 16.16, “Variation of
Take the
Substitute 0 for
Therefore, the gross ultimate load
(c)
The gross ultimate load
Answer to Problem 16.19P
The gross ultimate load
Explanation of Solution
Given information:
The unit weight of the soil
The value of cohesion
The soil friction angle
The location of depth of footing base
The width of the footing B is 1.8 m.
The value of eccentricity e is 0.3 m.
The inclined angle
Calculation:
For the continuous foundation, all shape factors are equal to one
Determine the depth factor
Substitute 1.2 m for
Determine the depth factor
Substitute
Determine the ultimate bearing capacity of the soil
Refer Table 16.2, “Bearing-capacity factors
Take the
Substitute 0 for
Determine the gross ultimate load
Substitute 1.8 m for B,
Therefore, the gross ultimate load
Want to see more full solutions like this?
Chapter 16 Solutions
MindTap Engineering for Das/Sobhan's Principles of Geotechnical Engineering, SI Edition, 9th Edition, [Instant Access], 2 terms (12 months)
- ***The answer includes: 1. The correct dimension of variables is: F: MLT^-2, v: LT^-1, μ:ML^-1T^-1, ρ: ML^-3, w: L 2. Choice of repeating variables: (w,v,ρ). Choice does NOT include F. Stick with choice throughout. 3. # pi terms = # variables- # dimensions = 5-3=2. 4. π1= F/w^2v^2ρ 5. π2= μ/wvp These are the correct answers for the problem, I just need the work involved in solving itarrow_forwardThe cross-section shown is used to support the loads on the beam below. The moment of inertia of the section is |= 1384 in4 and distance of the centroid of the section from the bottom is y = 5.8 in. [MA=4800 lb-ft, w=600 lb/ft, P=1400 lb, a=5ft,b=7ft,c= 2 ft,d=5ft] Ma b ཅ་ d 15 in 1.5 in 1.5 in. 2 in. k11 in. Cross section of the beam a) Construct the complete shear-force and bending-moment diagrams for the beam and determine the maximum positive bending moment in the beam. b) determine the maximum negative bending moment in the beam. c) Determine the maximum tension bending stress at any location along the beam. d) Determine the maximum compression bending stress at any location along the beam.arrow_forwardCOMPUTE THE VOLUME OF THE STOCKPILE SHOWN BELOW IN CUBIC YARDS USING THE AVERAGE AREA METHOD. PROVIDE YOUR RESULTS ON THIS PAGE USING THE WINDOWS CLIPBOARD CUT AND PASTE TOOLS. 166 170 168 -172 CONTOUR AREA = 2,663 S.F. CONTOUR AREA = 8,217 S.F CONTOUR AREA = 16,284 S.F CONTOUR AREA = 29,734 S.F. AVERAGE AREA METHOD FOR VOLUME OF EXCAVATION AND STOCKPILE CONTOUR ELEVATION CONTOUR AREA (FT) (FT³) ELEVATION DIFFERENCE (DEPTH) BETWEEN CONSECUTIVE CONTOURS AVERAGE AREA BETWEEM CONSECUTIVE CUMMULATIVE CONTOURS VOLUME (FT³) CUMMULATIVE VOLUME VOLUME (CY) (FT³) (FT) (FT)arrow_forward
- Using the graphic below, computer the bearings for courses AF, AB, and BC and azimuths for courses AF and BC. 128°28'58" 0.00 TRV-A 65°5'34" F 86°34'27" B 0.00 TRY-B • Azimuth AF: Bearing AF: Bearing AB: Azimuth BC: Bearing BC:arrow_forward4G 46:58 Problem 1 You are in the process of designing a water supply system for the whole Iligan City, and the design life of your system is to end in the year 2070. The population in the town has been measured every 10 years since 1980 by the Philippine Statistics Authority, and the reported populations are tabulated below. Estimate the population in the town using (a) arithmetic growth projection, (b) geometric growth projection (exponential formula), (c) declining growth projection (assuming a saturation concentration of 480,000 people), and (d) logistic curve projection. Population Year 1980 167,358 1990 226,568 2000 285,061 2010 322,821 2020 342,618 1.a) Arithmetic growth projection estimate Your answer * 5 points 1.b) Geometric growth * 5 points projection estimate Your answer 1.c) Declining growth projection estimate Your answer * 10 points כ 95arrow_forward2. Design a W section for a beam of A 36 steel Fy = 248 MPa to carry a uniform load of 293 kN/m on a simply supported span of 1.5 m. Assume lateral bracing is adequate for stability. Wt. of beam Area Depth (d) Properties of W sections available W 12 x 27 394.9 N/m Flange width (bf) Flange thickness (tf) Web thickness (tw) Moment of inertia (IX) Section modulus (SX) 5129 303.78 165.02 10.16 6.02 84.9 x 106 mm² 560.4 x 103 mm³ 3 W 12 x 31 453.4 N/m 5890 W 14 x 26 380.27 N/m 4948 307.09 352.81 165.74 127.64 11.81 10.62 6.73 6.48 99.5 x 106 mm² 101.56 x 106 mm4 674.3 x 103 mm³ 575.2 x 103 mm³arrow_forward
- ⚫ For the semi-circular arch shown in Fig.2, draw shear and bending moment diagram. 10 kN 5 m SkNarrow_forwardQ2: A 2 m X 3 m foundation is expected to carry a column load with eccentricities eB = 0.15 m and eL = 0.2 m. It is placed in a soil where e' = 10.0 kN/m2, 0'= 22°, and y = 18.0 kN/m², at 1.0 m depth. Determine the maximum load the foundation can carry with factor of safety of 3.arrow_forwardDetermine the forces in each member for the truss shown in using joint method and state if the member is in tension or compression. Wake table to show your final results. 24 kN 4 m 4 m 4 m SkN 3m shear Narrow_forward
- I need help calculating my VPC 0f 14+50, VPI 17+00 and VPT 19+50 elevations if I am given Sta 11+00 with elevation 5946.31. Problem 32 in the image below gives g1 and g2, k=64.arrow_forwardused to support the loads on the beam below. The moment of inertia of the section is |= 1384 in and distance of the centroid of the section from the bottom is y = 5.8 in. [MA 4000 lb-ft, w=900 lb/ft, P=1500 lb, a = 5 ft, b = 8 ft, c = 3 ft, d = 6 ft] Ma W a b B d P 1.5 in.k 1.5 in. 15 in. z- 2 in. 11 in. Cross section of the beam Construct the complete shear- force and bending-moment diagrams for the beam and determine the maximum positive bending moment in the beam.arrow_forwardThe cross-section shown is used to support the loads on the beam below. The moment of inertia of the section is |= 1384 in and distance of the centroid of the section from the bottom is y = 5.8 in. [MA-4000 lb-ft, w=900 lb/ft, P=1500 lb, a = 5 ft, b = 8 ft, c = 3 ft, d = 6 ft] Ma 15 in 1.5 in 13 in. 2 in 11 in. Cross section of the beam Determine the maximum tension bending stress at any location along the beam.arrow_forward
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning