OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
11th Edition
ISBN: 9781305673939
Author: Darrell Ebbing; Steven D. Gammon
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 16.149QP
A solution of weak base is titrated to the equivalence point with a strong acid. Which one of the following statements is most likely to be correct?
- a The pH of the solution at the equivalence point is 7.0.
- b The pH of the solution is greater than 13.0.
- c The pH of the solution is less than 2.0.
- d The pH of the solution is between 2.0 and 7.0.
- e The pH of the solution is between 7.0 and 13.0.
The reason that best supports my choosing the answer above is
- a Whenever a solution is titrated with a strong acid, the solution will be very acidic.
- b Because the solution contains a weak base and the acid (titrant) is used up at the equivalence point, the solution will be basic.
- c Because the solution contains the conjugate acid of the weak base at the equivalence point, the solution will be acidic.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
OWLv2 for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 1 term (6 months)
Ch. 16.1 - Lactic acid, HC3H5O3, is found in sour milk, where...Ch. 16.1 - What are the concentrations of hydrogen ion and...Ch. 16.1 - What is the pH of an aqueous solution that is...Ch. 16.1 - You have prepared dilute solutions of equal molar...Ch. 16.2 - Sulfurous acid, H2SO3, is a diprotic acid with Ka1...Ch. 16.3 - Quinine is an alkaloid, or naturally occurring...Ch. 16.3 - What is the hydronium-ion concentration of a 0.20...Ch. 16.3 - Prob. 16.2CCCh. 16.4 - Consider solutions of the following salts: a....Ch. 16.4 - Calculate the following at 25C, using Tables 16.1...
Ch. 16.4 - Benzoic acid, HC7H5O2, and its salts are used as...Ch. 16.4 - Which of the following aqueous solutions has the...Ch. 16.5 - The chemical equation for the hydrolysis of...Ch. 16.5 - What is the concentration of formate ion, CHO2, in...Ch. 16.5 - One liter of solution was prepared by dissolving...Ch. 16.6 - What is the pH of a buffer prepared by adding 30.0...Ch. 16.6 - Suppose you add 50.0 mL of 0.10 M sodium hydroxide...Ch. 16.6 - Prob. 16.5CCCh. 16.6 - The beaker on the left below represents a buffer...Ch. 16.7 - What is the pH of a solution in which 15 mL of...Ch. 16.7 - What is the pH at the equivalence point when 25 mL...Ch. 16.7 - Prob. 16.16ECh. 16 - Write an equation for the ionization of hydrogen...Ch. 16 - Prob. 16.2QPCh. 16 - Briefly describe two methods for determining Ka...Ch. 16 - Describe how the degree of ionization of a weak...Ch. 16 - Prob. 16.5QPCh. 16 - Phosphorous acid, H2PHO3, is a diprotic acid....Ch. 16 - Prob. 16.7QPCh. 16 - Write the equation for the ionization of aniline,...Ch. 16 - Which of the following is the strongest base: NH3,...Ch. 16 - Do you expect a solution of anilinium chloride...Ch. 16 - Prob. 16.11QPCh. 16 - The pH of 0.10 M CH3NH2 (methylamine) is 11.8....Ch. 16 - Define the term buffer. Give an example.Ch. 16 - What is meant by the capacity of a buffer?...Ch. 16 - Prob. 16.15QPCh. 16 - If the pH is 8.0 at the equivalence point for the...Ch. 16 - Which of the following salts would produce the...Ch. 16 - If you mix 0.10 mol of NH3 and 0.10 mol of HCl in...Ch. 16 - Hydrogen sulfide, H2S, is a very weak diprotic...Ch. 16 - If 20.0 mL of a 0.10 M NaOH solution is added to a...Ch. 16 - Aqueous Solutions of Acids, Bases, and Salts a For...Ch. 16 - The pH of Mixtures of Acid, Base, and Salt...Ch. 16 - Which of the following beakers best represents a...Ch. 16 - You have 0.10-mol samples of three acids...Ch. 16 - Prob. 16.25QPCh. 16 - You have the following solutions, all of the same...Ch. 16 - Prob. 16.27QPCh. 16 - A chemist prepares dilute solutions of equal molar...Ch. 16 - Prob. 16.29QPCh. 16 - Prob. 16.30QPCh. 16 - You are given the following acidbase titration...Ch. 16 - The three flasks shown below depict the titration...Ch. 16 - Write chemical equations for the acid ionizations...Ch. 16 - Write chemical equations for the acid ionizations...Ch. 16 - Acrylic acid, whose formula is HC3H3O2 or...Ch. 16 - Heavy metal azides, which are salts of hydrazoic...Ch. 16 - Boric acid, B(OH)3, is used as a mild antiseptic....Ch. 16 - Formic acid, HCHO2, is used to make methyl formate...Ch. 16 - C6H4NH2COOH, para-aminobenzoic acid (PABA), is...Ch. 16 - Barbituric acid. HC4H3N2O3, is used to prepare...Ch. 16 - A solution of acetic acid, HC2H3O2, on a...Ch. 16 - A chemist wanted to determine the concentration of...Ch. 16 - Hydrofluoric acid, HF, unlike hydrochloric acid,...Ch. 16 - Chloroacetic acid, HC2H2ClO2, has a greater acid...Ch. 16 - What is the hydronium-ion concentration of a 2.00...Ch. 16 - What is the hydronium-ion concentration of a 3.00 ...Ch. 16 - Phthalic acid, H2C8H4O4, is a diprotic acid used...Ch. 16 - Carbonic acid, H2CO3, can be found in a wide...Ch. 16 - Write the chemical equation for the base...Ch. 16 - Write the chemical equation for the base...Ch. 16 - Butylamine, C4H3NH2 is a weak base. A 0.47 M...Ch. 16 - Trimethylamine, (CH3)3N, is a gas with a fishy,...Ch. 16 - What is the concentration of hydroxide ion in a...Ch. 16 - What is the concentration of hydroxide ion in a...Ch. 16 - Note whether hydrolysis occurs for each of the...Ch. 16 - Note whether hydrolysis occurs for each of the...Ch. 16 - Prob. 16.57QPCh. 16 - Prob. 16.58QPCh. 16 - For each of the following salts, indicate whether...Ch. 16 - Note whether the aqueous solution of each of the...Ch. 16 - Decide whether solutions of the following salts...Ch. 16 - Decide whether solutions of the following salts...Ch. 16 - Obtain a the Kb value for NO2; b the Ka value for...Ch. 16 - Prob. 16.64QPCh. 16 - What is the pH of a 0.025 M aqueous solution of...Ch. 16 - Calculate the OH concentration and pH of a 0.0025...Ch. 16 - Calculate the concentration of pyridine, C5H5N, in...Ch. 16 - What is the pH of a 0.30 M solution of...Ch. 16 - Calculate the degree of ionization of a 0.75 M HF...Ch. 16 - Calculate the degree of ionization of a 0.22 M...Ch. 16 - What is the pH of a solution that is 0.600 M HCHO2...Ch. 16 - What is the pH of a solution that is 0.20 M KOCN...Ch. 16 - What is the pH of a solution that is 0.10 M CH3NH2...Ch. 16 - What is the pH of a solution that is 0.15 M...Ch. 16 - A buffer is prepared by adding 39.8 mL of 0.75 M...Ch. 16 - A buffer is prepared by adding 115 mL of 0.30 M...Ch. 16 - What is the pH of a buffer solution that is 0.10 M...Ch. 16 - A buffer is prepared by mixing 525 mL of 0.50 M...Ch. 16 - What is the pH of a buffer solution that is 0.15 M...Ch. 16 - What is the pH of a buffer solution that is 0.10 M...Ch. 16 - What is the pH of a buffer solution that is 0.15 M...Ch. 16 - What is the pH of a buffer solution that is 0.15 M...Ch. 16 - How many moles of sodium acetate must be added to...Ch. 16 - How many moles of hydrofluoric acid, HF, must be...Ch. 16 - What is the pH of a solution in which 15 mL of...Ch. 16 - What is the pH of a solution in which 35 mL of...Ch. 16 - A 1.24-g sample of benzoic acid was dissolved in...Ch. 16 - A 0.400-g sample of propionic acid was dissolved...Ch. 16 - Find the pH of the solution obtained when 32 mL of...Ch. 16 - What is the pH at the equivalence point when 22 mL...Ch. 16 - A 50.0-mL sample of a 0.100 M solution of NaCN is...Ch. 16 - Sodium benzoate, NaC7H5O2, is used as a...Ch. 16 - Calculate the pH of a solution obtained by mixing...Ch. 16 - Calculate the pH of a solution obtained by mixing...Ch. 16 - Salicylic acid, C6H4OHCOOH, is used in the...Ch. 16 - Cyanoacetic acid, CH2CNCOOH, is used in the...Ch. 16 - A 0.050 M aqueous solution of sodium hydrogen...Ch. 16 - A 0.10 M aqueous solution of sodium dihydrogen...Ch. 16 - Prob. 16.99QPCh. 16 - Calculate the base-ionization constants for PO43...Ch. 16 - Calculate the pH of a 0.072 M aqueous solution of...Ch. 16 - Calculate the pH of a 0.10 M aqueous solution of...Ch. 16 - An artificial fruit beverage contains 11.0 g of...Ch. 16 - A buffer is made by dissolving 12.5 g of sodium...Ch. 16 - Blood contains several acid base systems that tend...Ch. 16 - Codeine, C23H21NO3, is an alkaloid (Kb = 6 2 109)...Ch. 16 - Calculate the pH of a solution obtained by mixing...Ch. 16 - Calculate the pH of a solution made up from 2.0 g...Ch. 16 - Find the pH of the solution obtained when 25 mL of...Ch. 16 - What is the pH of the solution obtained by...Ch. 16 - Ionization of the first proton from H2SO4 is...Ch. 16 - Ionization of the first proton from H2SeO4 is...Ch. 16 - Methylammonium chloride is a salt of methylamine,...Ch. 16 - Sodium benzoate is a salt of benzoic acid,...Ch. 16 - Each of the following statements concerns a 0.010...Ch. 16 - Each of the following statements concerns a 0.10 M...Ch. 16 - A 0.288-g sample of an unknown monoprotic organic...Ch. 16 - A 0.239-g sample of unknown organic base is...Ch. 16 - a Draw a pH titration curve that represents the...Ch. 16 - a Draw a pH titration curve that represents the...Ch. 16 - The equilibrium equations and Ka values for three...Ch. 16 - Prob. 16.122QPCh. 16 - A 25.0-mL sample of hydroxylamine is titrated to...Ch. 16 - A 25.00-mL sample contains 0.562 g of NaHCO3. This...Ch. 16 - A solution made up of 1.0 M NH3 and 0.50 M...Ch. 16 - A solution is prepared from 0.150 mol of formic...Ch. 16 - An important component of blood is the buffer...Ch. 16 - An important component of blood is the buffer...Ch. 16 - Tartaric acid is a weak diprotic fruit acid with...Ch. 16 - Malic acid is a weak diprotic organic acid with...Ch. 16 - A quantity of 0.25 M sodium hydroxide is added to...Ch. 16 - A quantity of 0.15 M hydrochloric acid is added to...Ch. 16 - Prob. 16.133QPCh. 16 - Prob. 16.134QPCh. 16 - A 30.0-mL sample of 0.05 M HClO is titrated by a...Ch. 16 - Prob. 16.136QPCh. 16 - Prob. 16.137QPCh. 16 - Calculate the pH of a solution made by mixing 0.62...Ch. 16 - Cyanic acid, HOCN, is a weak acid with a Ka value...Ch. 16 - The Kb for NH3 is 1.8 105 at 25C. Calculate the...Ch. 16 - Ka for formic acid is 1.7 104 at 25C. A buffer is...Ch. 16 - K4 for acetic acid is 1.7 105 at 25C. A buffer...Ch. 16 - Prob. 16.143QPCh. 16 - Prob. 16.144QPCh. 16 - Prob. 16.145QPCh. 16 - Two samples of 1.00 M HCl of equivalent volumes...Ch. 16 - Prob. 16.147QPCh. 16 - Prob. 16.148QPCh. 16 - A solution of weak base is titrated to the...Ch. 16 - A buffer solution is prepared by mixing equal...Ch. 16 - The pH of a white vinegar solution is 2.45. This...Ch. 16 - The pH of a household cleaning solution is 11.50....Ch. 16 - What is the freezing point of 0.92 M aqueous...Ch. 16 - Prob. 16.154QPCh. 16 - A chemist needs a buffer with pH 4.35. How many...Ch. 16 - A chemist needs a buffer with pH 3.50. How many...Ch. 16 - Weak base B has a pKb of 6.78 and weak acid HA has...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Follow the directions of Question 64. Consider two beakers: Beaker A has a weak acid(K a=1105). Beaker B has HCI. The volume and molarity of each acid in the beakers are the same. Both acids are to be titrated with a 0.1 M solution of NaOH. (a) Before titration starts (at zero time), the pH of the solution in Beaker A is the pH of the solution in Beaker B. (b) At half-neutralization (halfway to the equivalence point), the pH of the solution in Beaker A the pH of the solution in Beaker B. (c) When each solution has reached its equivalence point, the pH of the solution in Beaker A the pH of the solution in Beaker B. (d) At the equivalence point, the volume of NaOH used to titrate HCI in Beaker B the volume of NaOH used to titrate the weak acid in Beaker A.arrow_forwardAnother way to treat data from a pH titration is to graph the absolute value of the change in pH per change in milliliters added versus milliliters added (pH/mL versus mL added). Make this graph using your results from Exercise 61. What advantage might this method have over the traditional method for treating titration data?arrow_forwardYou are given the following acidbase titration data, where each point on the graph represents the pH after adding a given volume of titrant (the substance being added during the titration). a What substance is being titrated, a strong acid, strong base, weak acid, or weak base? b What is the pH at the equivalence point of the tiration? c What indicator might you use to perform this titration? Explain.arrow_forward
- Sulfanilic acid (NH2C6H4SO3H) is used in manufacturing dyes. It ionizes in water according to the equilibrium equation NH2C6H4SO3H(aq)+H2O(l)NH2C6H4SO3(aq)+H3O+(aq)Ka=5.9104 A buffer is prepared by dissolving 0.20 mol of sulfanilicacid and 0.13 mol of sodium sulfanilate (NaNH2C6H4SO3) in water and diluting to 1.00 L. Compute the pH of the solution. Suppose 0.040 mol of HCl is added to the buffer.Calculate the pH of the solution that results.arrow_forwardA buffer solution has a pH value of 9.8. Which value in the set of pH values 8.79.79.89.910.9 is the most likely value for the buffer solution pH after a. a small amount of strong acid has been added? b. a small amount of strong base has been added?arrow_forwardTwo samples of 1.00 M HCl of equivalent volumes are prepared. One sample is titrated to the equivalence point with a 1.00 M solution of sodium hydroxide, while the other sample is titrated to the equivalence point with a 1.00 M solution of calcium hydroxide. a Compare the volumes of sodium hydroxide and calcium hydroxide required to reach the equivalence point for each titration. b Determine the pH of each solution halfway to the equivalence point. c Determine the pH of each solution at the equivalence point.arrow_forward
- A buffer solution is prepared by adding 0.125 mol ammonium chloride to 500. mL of 0.500-M aqueous ammonia. Calculate the pH of the buffer. If 0.0100 mol HCl gas is bubbled into 500. mL buffer and all of the gas dissolves, calculate the new pH of the solution.arrow_forwardExplain how to choose the appropriate acid-base indicator for the titration of a weak base with a strong acid.arrow_forwardWhat is the pH of a buffer that is 0.150 M in a weak acid and 0.150 M in the acids conjugate base? The acids ionization constant is 6.8 106.arrow_forward
- Briefly describe how a buffer solution can control the pH of a solution when strong acid is added and when strong base is added. Use NH3/NH4Cl as an example of a buffer and HCl and NaOH as the strong acid and strong base.arrow_forwardIdentify each pair that could form a buffer. (a) NaOH and NaCl (b) NaOH and NH3 (c) Na3PO4 and Na2HPO4arrow_forwardFour grams of a monoprotic weak acid are dissolved in water to make 250.0 mL of solution with a pH of 2.56. The solution is divided into two equal parts, A and B. Solution A is titrated with strong base to its equivalence point. Solution B is added to solution A after solution A is neutralized. The pH of the resulting solution is 4.26. What is the molar mass of the acid?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY