Concept explainers
A 30.0-mL sample of 0.05 M HClO is titrated by a 0.0250 M KOH solution Ka for HClO is 3.5 × 10−8. Calculate a the pH when no base has been added; b the pH when 30.00 mL of the base has been added; c the pH at the equivalence point; d the pH when an additional 4.00 mL of the KOH solution has been added beyond the equivalence point.
(a)
Interpretation:
The pH of the given points of the titration of
when no base has been added
Concept Introduction:
pOH definition:
The pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion
Relationship between pH and pOH:
Answer to Problem 16.135QP
The pH of the given points of the titration of
The pH when no base has been added is 4.4
Explanation of Solution
To Calculate: The pH when no base has been added
Given data:
The volume of
The concentration of
The concentration of
The
pH prior to the start of the titration
Construct an equilibrium table for the hydrolysis of
|
|||
Initial |
0.05
0.05-x |
0.00 | 0.00 |
Change |
|
|
|
Equilibrium |
x | x |
The
Now substitute equilibrium concentrations into the equilibrium-constant expression.
Here, x gives the concentration of hydronium ion
Finally calculate pH as follows,
The pH when no base has been added was calculated as 4.4
(b)
Interpretation:
The pH of the given points of the titration of
when 30.0 mL of the base has been added
Concept Introduction:
pOH definition:
The pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion
Relationship between pH and pOH:
Answer to Problem 16.135QP
The pH of the given points of the titration of
The pH when 30.0 mL of the base has been added is 7.5
Explanation of Solution
To Calculate: The pH when 30.0 mL of the base has been added
After the addition of 30.0 mL of 0.0250 M
At this point, the total volume is,
Now, the moles of
After the reaction, the moles of
The moles of
The concentrations are:
Solve for
The pH is calculated as follows,
The pH when 30.0 mL of the base has been added was calculated as 7.5
(c)
Interpretation:
The pH of the given points of the titration of
At the equivalence point
Concept Introduction:
pOH definition:
The pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion
Relationship between pH and pOH:
Answer to Problem 16.135QP
The pH of the given points of the titration of
The pH at the equivalence point is 9.8
Explanation of Solution
To Calculate: The pH at the equivalence point
Calculate the volume of
The volume of
Hence, the total volume is as follows,
The equilibrium reaction is,
The value of
Here, x gives the hydroxide ion concentration.
The pH can be calculated from pOH as follows,
The pH at the equivalence point was calculated as 9.8
(d)
Interpretation:
The pH of the given points of the titration of
When an additional 4.00 mL of the
Concept Introduction:
pOH definition:
The pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion
Relationship between pH and pOH:
Answer to Problem 16.135QP
The pH of the given points of the titration of
The pH when an additional 4.00 mL of the
Explanation of Solution
To Calculate: The pH when an additional 4.00 mL of the
Calculate the moles of base added.
The total volume after the addition of 4.00 mL of the
The hydroxide ion concentration and the pH are:
The pH is calculated as follows,
The pH when an additional 4.00 mL of the
Want to see more full solutions like this?
Chapter 16 Solutions
OWLv2 with Student Solutions Manual eBook for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 4 terms (24 months)
- In three dimensions, explain the concept of the velocity distribution function of particles within the kinetic theory of gases.arrow_forwardIn the kinetic theory of gases, explain the concept of the velocity distribution function of particles in space.arrow_forwardIn the kinetic theory of gases, explain the concept of the velocity distribution function of particles.arrow_forward
- Hi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION with its parts spread out till part (g), please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all calculations step by step EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part PART A AND PART B!!!!! till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward
- 8b. Explain, using key intermediates, why the above two products are formed instead of the 1,2-and 1,4- products shown in the reaction below. CIarrow_forward(5pts) Provide the complete arrow pushing mechanism for the chemical transformation depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O H I I CH3O-H H I ① Harrow_forward6. Draw the products) formed from the following reactions. (a) HIarrow_forward
- Don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forward1. For each of the following, predict the products of the reaction by writing a balance net ionic equation for each. If no reaction is expected, then write NO REACTION. (a) AgNO3 (aq) is mixed with Na2CO3 (aq). (b) An aqueous solution of ammonium sulfate is added to an aqueous solution of calcium chloride. (c) RbI (aq) is added to Pb(NO3)2 (aq). (d) NaCl (s) is added to AgNO3 (aq).arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning