Concept explainers
Tartaric acid is a weak diprotic fruit acid with Ka1 = 1.0 × 10−3 and Ka2 = 4.6 × 10−5.
- a Letting the symbol H2A represent tartaric acid, write the chemical equations that represent Ka1 and Ka2. Write the chemical equation that represents Ka1 × Ka2.
- b Qualitatively describe the relative concentrations of H2A, HA−, A2−, and H3O+ in a solution that is about 0.5 M in tartaric acid.
- c Calculate the pH of a 0 0250 M tartaric acid solution and the equilibrium concentration of [H2A].
- d What is the A2− concentration in solutions b and c?
(a)
Interpretation:
Tartaric acid is weak diprotic acid with
Considering the symbol
Concept Introduction:
Acid ionization constant
The ionization of a weak acid
The equilibrium expression for the above reaction is given below.
Where,
Diprotic and polyprotic acids:
Acids having two or more hydrogen atoms are termed as diprotic or polyprotic acids. These acids lose one proton at a time by undergoing successive ionizations.
For diprotic acids, the successive ionization constants are designated as
For triprotic acids, the successive ionization constants are designated as
Answer to Problem 16.129QP
The chemical equation representing
The chemical equation representing
The chemical equation representing
Explanation of Solution
To Write: Considering the symbol
Given data:
Tartaric acid is a weak diprotic fruit acid with
The chemical equation representing
The chemical equation representing
The chemical equation representing
The chemical equation representing
The chemical equation representing
The chemical equation representing
(b)
Interpretation:
Tartaric acid is weak diprotic acid with
Qualitatively the relative concentrations of
Concept Introduction:
Acid ionization constant
The ionization of a weak acid
The equilibrium expression for the above reaction is given below.
Where,
Diprotic and polyprotic acids:
Acids having two or more hydrogen atoms are termed as diprotic or polyprotic acids. These acids lose one proton at a time by undergoing successive ionizations.
For diprotic acids, the successive ionization constants are designated as
For triprotic acids, the successive ionization constants are designated as
Answer to Problem 16.129QP
The relative concentrations of
Explanation of Solution
To Give: Qualitatively the relative concentrations of
The relative concentrations of
The relative concentrations of
(c)
Interpretation:
Tartaric acid is weak diprotic acid with
The pH of 0.0250 M tartaric acid solution and the equilibrium concentration of
Concept Introduction:
Acid ionization constant
The ionization of a weak acid
The equilibrium expression for the above reaction is given below.
Where,
Diprotic and polyprotic acids:
Acids having two or more hydrogen atoms are termed as diprotic or polyprotic acids. These acids lose one proton at a time by undergoing successive ionizations.
For diprotic acids, the successive ionization constants are designated as
For triprotic acids, the successive ionization constants are designated as
Answer to Problem 16.129QP
The pH of 0.0250 M tartaric acid solution is 2.34
The equilibrium concentration of
Explanation of Solution
To Calculate: The pH of 0.0250 M tartaric acid solution and the equilibrium concentration of
The reaction is:
The
Substitute into the equilibrium constant expression
The pH is calculated as follows,
The concentration of
The pH of 0.0250 M tartaric acid solution is 2.34
The equilibrium concentration of
(d)
Interpretation:
Tartaric acid is weak diprotic acid with
The
Concept Introduction:
Acid ionization constant
The ionization of a weak acid
The equilibrium expression for the above reaction is given below.
Where,
Diprotic and polyprotic acids:
Acids having two or more hydrogen atoms are termed as diprotic or polyprotic acids. These acids lose one proton at a time by undergoing successive ionizations.
For diprotic acids, the successive ionization constants are designated as
For triprotic acids, the successive ionization constants are designated as
Answer to Problem 16.129QP
The
Explanation of Solution
To Calculate: The
Concentration of
Consider the second ionization of the acid for the calculation of
The
Substitute into the equilibrium constant expression
Assume y is small compared to
Similarly, the concentration of
The
Want to see more full solutions like this?
Chapter 16 Solutions
OWLv2 with Student Solutions Manual eBook for Ebbing/Gammon's General Chemistry, 11th Edition, [Instant Access], 4 terms (24 months)
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward(11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)!arrow_forward
- . 3°C with TH 12. (10pts total) Provide the major product for each reaction depicted below. If no reaction occurs write NR. Assume heat dissipation is carefully controlled in the fluorine reaction. 3H 24 total (30) 24 21 2h • 6H total ● 8H total 34 래 Br2 hv major product will be most Substituted 12 hv Br NR I too weak of a participate in P-1 F₂ hv Statistically most favored product will be major = most subst = thermo favored hydrogen atom abstractor to LL Farrow_forwardFive chemistry project topic that does not involve practicalarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Q2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.arrow_forward13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Googlearrow_forwardPrint Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfoxarrow_forward
- 10. (5pts) Provide the complete arrow pushing mechanism for the chemical transformation → depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O II HA H CH3O-H H ①arrow_forwardDo the Lone Pairs get added bc its valence e's are a total of 6 for oxygen and that completes it or due to other reasons. How do we know the particular indication of such.arrow_forwardNGLISH b) Identify the bonds present in the molecule drawn (s) above. (break) State the function of the following equipments found in laboratory. Omka) a) Gas mask b) Fire extinguisher c) Safety glasses 4. 60cm³ of oxygen gas diffused through a porous hole in 50 seconds. How long w 80cm³ of sulphur(IV) oxide to diffuse through the same hole under the same conditions (S-32.0.0-16.0) (3 m 5. In an experiment, a piece of magnesium ribbon was cleaned with steel w clean magnesium ribbon was placed in a crucible and completely burnt in oxy cooling the product weighed 4.0g a) Explain why it is necessary to clean magnesium ribbon. Masterclass Holiday assignmen PB 2arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning