General Chemistry - Standalone book (MindTap Course List)
General Chemistry - Standalone book (MindTap Course List)
11th Edition
ISBN: 9781305580343
Author: Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 16, Problem 16.129QP

Tartaric acid is a weak diprotic fruit acid with Ka1 = 1.0 × 10−3 and Ka2 = 4.6 × 10−5.

  1. a Letting the symbol H2A represent tartaric acid, write the chemical equations that represent Ka1 and Ka2. Write the chemical equation that represents Ka1 × Ka2.
  2. b Qualitatively describe the relative concentrations of H2A, HA, A2−, and H3O+ in a solution that is about 0.5 M in tartaric acid.
  3. c Calculate the pH of a 0 0250 M tartaric acid solution and the equilibrium concentration of [H2A].
  4. d What is the A2− concentration in solutions b and c?

(a)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

Tartaric acid is weak diprotic acid with Ka1=1.0×103 and Ka2=4.6×105

Considering the symbol H2A representing the tartaric acid, the chemical equations that represents Ka1 and Ka2 has to be written.  Also, the chemical equation that represents Ka1×Ka2 has to be written

Concept Introduction:

Acid ionization constant Ka :

The ionization of a weak acid HA can be given as follows,

HA(aq)H+(aq)+A-(aq)

The equilibrium expression for the above reaction is given below.

Ka=[H+][A-][HA]

Where,

Ka is acid ionization constant,

[H+] is concentration of hydrogen ion

[A-] is concentration of acid anion

[HA] is concentration of the acid

Diprotic and polyprotic acids:

Acids having two or more hydrogen atoms are termed as diprotic or polyprotic acids.  These acids lose one proton at a time by undergoing successive ionizations.

For diprotic acids, the successive ionization constants are designated as Ka1andKa2

For triprotic acids, the successive ionization constants are designated as Ka1,Ka2andKa3

Answer to Problem 16.129QP

The chemical equation representing Ka1 is: H2A + H2 H3O+ + HA-

The chemical equation representing Ka2 is: HA- + H2 H3O+ + A2-

The chemical equation representing Ka1×Ka2 is: H2A + 2H2 2H3O+ + A2-

Explanation of Solution

To Write: Considering the symbol H2A representing the tartaric acid, the chemical equations that represents Ka1 and Ka2 and also the chemical equation that represents Ka1×Ka2

Given data:

Tartaric acid is a weak diprotic fruit acid with Ka1=1.0×103 and Ka2=4.6×105

The chemical equation representing Ka1 is:

H2A + H2 H3O+ + HA-

The chemical equation representing Ka2 is:

HA- + H2 H3O+ + A2-

The chemical equation representing Ka1×Ka2 is:

K = Ka1×Ka2H2A + 2H2 2H3O+ + A2-

Conclusion

The chemical equation representing Ka1 was written as: H2A + H2 H3O+ + HA-

The chemical equation representing Ka2 was written as: HA- + H2 H3O+ + A2-

The chemical equation representing Ka1×Ka2 was written as: H2A + 2H2 2H3O+ + A2-

(b)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

Tartaric acid is weak diprotic acid with Ka1=1.0×103 and Ka2=4.6×105

Qualitatively the relative concentrations of H2A , HA , A2- and H3O+ in a 0.5 M tartaric  acid solution has to be given

Concept Introduction:

Acid ionization constant Ka :

The ionization of a weak acid HA can be given as follows,

HA(aq)H+(aq)+A-(aq)

The equilibrium expression for the above reaction is given below.

Ka=[H+][A-][HA]

Where,

Ka is acid ionization constant,

[H+] is concentration of hydrogen ion

[A-] is concentration of acid anion

[HA] is concentration of the acid

Diprotic and polyprotic acids:

Acids having two or more hydrogen atoms are termed as diprotic or polyprotic acids.  These acids lose one proton at a time by undergoing successive ionizations.

For diprotic acids, the successive ionization constants are designated as Ka1andKa2

For triprotic acids, the successive ionization constants are designated as Ka1,Ka2andKa3

Answer to Problem 16.129QP

The relative concentrations of H2A , HA , A2- and H3O+ in a 0.5 M tartaric  acid solution is: H2A >> H3O+ = HA- >> A2-

Explanation of Solution

To Give: Qualitatively the relative concentrations of H2A , HA , A2- and H3O+ in a 0.5 M tartaric  acid solution

The relative concentrations of H2A , HA , A2- and H3O+ in a 0.5 M tartaric  acid solution is:

H2A >> H3O+ = HA- >> A2-

Conclusion

The relative concentrations of H2A , HA , A2- and H3O+ in a 0.5 M tartaric  acid solution was given as: H2A >> H3O+ = HA- >> A2-

(c)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

Tartaric acid is weak diprotic acid with Ka1=1.0×103 and Ka2=4.6×105

The pH of 0.0250 M tartaric acid solution and the equilibrium concentration of [H2A] has to be calculated

Concept Introduction:

Acid ionization constant Ka :

The ionization of a weak acid HA can be given as follows,

HA(aq)H+(aq)+A-(aq)

The equilibrium expression for the above reaction is given below.

Ka=[H+][A-][HA]

Where,

Ka is acid ionization constant,

[H+] is concentration of hydrogen ion

[A-] is concentration of acid anion

[HA] is concentration of the acid

Diprotic and polyprotic acids:

Acids having two or more hydrogen atoms are termed as diprotic or polyprotic acids.  These acids lose one proton at a time by undergoing successive ionizations.

For diprotic acids, the successive ionization constants are designated as Ka1andKa2

For triprotic acids, the successive ionization constants are designated as Ka1,Ka2andKa3

Answer to Problem 16.129QP

The pH of 0.0250 M tartaric acid solution is 2.34

The equilibrium concentration of [H2A] is 0.0205 M

Explanation of Solution

To Calculate: The pH of 0.0250 M tartaric acid solution and the equilibrium concentration of [H2A]

The reaction is:

H2   +  H2   H3O+ + HA-0.0250-x   x     x

The Ka1 value is Ka1=1.0×103

Substitute into the equilibrium constant expression

Ka1 =[HA][H3O+][H2A]1.0×103 =x2(0.0250x)Solving x using quadratic equation, we getx =4.5×103 M

The pH is calculated as follows,

pH =-log[H3O+] =-log(4.5×103) =2.34

The concentration of [H2A] is:

[H2A] =0.0250 - x =0.0250 - 4.52×103 =0.0205 M

Conclusion

The pH of 0.0250 M tartaric acid solution is 2.34

The equilibrium concentration of [H2A] is 0.0205 M

(d)

Expert Solution
Check Mark
Interpretation Introduction

Interpretation:

Tartaric acid is weak diprotic acid with Ka1=1.0×103 and Ka2=4.6×105

The A2- concentration in solutions (b) and (c) has to be calculated

Concept Introduction:

Acid ionization constant Ka :

The ionization of a weak acid HA can be given as follows,

HA(aq)H+(aq)+A-(aq)

The equilibrium expression for the above reaction is given below.

Ka=[H+][A-][HA]

Where,

Ka is acid ionization constant,

[H+] is concentration of hydrogen ion

[A-] is concentration of acid anion

[HA] is concentration of the acid

Diprotic and polyprotic acids:

Acids having two or more hydrogen atoms are termed as diprotic or polyprotic acids.  These acids lose one proton at a time by undergoing successive ionizations.

For diprotic acids, the successive ionization constants are designated as Ka1andKa2

For triprotic acids, the successive ionization constants are designated as Ka1,Ka2andKa3

Answer to Problem 16.129QP

The A2- concentration in solutions (b) and (c) is 4.6×105 M

Explanation of Solution

To Calculate: The A2- concentration in solutions (b) and (c)

Concentration of A2- in solution (c):

Consider the second ionization of the acid for the calculation of A2- concentration.

     HA + H2         H3O+  A24.52×103+y 4.52×103+y y

The Ka2 value is Ka2=4.6×105

Substitute into the equilibrium constant expression

Assume y is small compared to 4.52×103 and neglect it.

[A2-] =[HA][Ka2][H3O+] =(4.52×103)(4.6×105)(4.52×103)x =4.6×105 M

Similarly, the concentration of A2- in solution (b) is also 4.6×105 M

Conclusion

The A2- concentration in solutions (b) and (c) was calculated as 4.6×105 M

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Briefly describe the compounds called carboranes.
Please don't use Ai solution
None

Chapter 16 Solutions

General Chemistry - Standalone book (MindTap Course List)

Ch. 16.4 - Benzoic acid, HC7H5O2, and its salts are used as...Ch. 16.4 - Which of the following aqueous solutions has the...Ch. 16.5 - The chemical equation for the hydrolysis of...Ch. 16.5 - What is the concentration of formate ion, CHO2, in...Ch. 16.5 - One liter of solution was prepared by dissolving...Ch. 16.6 - What is the pH of a buffer prepared by adding 30.0...Ch. 16.6 - Suppose you add 50.0 mL of 0.10 M sodium hydroxide...Ch. 16.6 - Prob. 16.5CCCh. 16.6 - The beaker on the left below represents a buffer...Ch. 16.7 - What is the pH of a solution in which 15 mL of...Ch. 16.7 - What is the pH at the equivalence point when 25 mL...Ch. 16.7 - Prob. 16.16ECh. 16 - Write an equation for the ionization of hydrogen...Ch. 16 - Prob. 16.2QPCh. 16 - Briefly describe two methods for determining Ka...Ch. 16 - Describe how the degree of ionization of a weak...Ch. 16 - Prob. 16.5QPCh. 16 - Phosphorous acid, H2PHO3, is a diprotic acid....Ch. 16 - Prob. 16.7QPCh. 16 - Write the equation for the ionization of aniline,...Ch. 16 - Which of the following is the strongest base: NH3,...Ch. 16 - Do you expect a solution of anilinium chloride...Ch. 16 - Prob. 16.11QPCh. 16 - The pH of 0.10 M CH3NH2 (methylamine) is 11.8....Ch. 16 - Define the term buffer. Give an example.Ch. 16 - What is meant by the capacity of a buffer?...Ch. 16 - Prob. 16.15QPCh. 16 - If the pH is 8.0 at the equivalence point for the...Ch. 16 - Which of the following salts would produce the...Ch. 16 - If you mix 0.10 mol of NH3 and 0.10 mol of HCl in...Ch. 16 - Hydrogen sulfide, H2S, is a very weak diprotic...Ch. 16 - If 20.0 mL of a 0.10 M NaOH solution is added to a...Ch. 16 - Aqueous Solutions of Acids, Bases, and Salts a For...Ch. 16 - The pH of Mixtures of Acid, Base, and Salt...Ch. 16 - Which of the following beakers best represents a...Ch. 16 - You have 0.10-mol samples of three acids...Ch. 16 - Prob. 16.25QPCh. 16 - You have the following solutions, all of the same...Ch. 16 - Prob. 16.27QPCh. 16 - A chemist prepares dilute solutions of equal molar...Ch. 16 - Prob. 16.29QPCh. 16 - Prob. 16.30QPCh. 16 - You are given the following acidbase titration...Ch. 16 - The three flasks shown below depict the titration...Ch. 16 - Write chemical equations for the acid ionizations...Ch. 16 - Write chemical equations for the acid ionizations...Ch. 16 - Acrylic acid, whose formula is HC3H3O2 or...Ch. 16 - Heavy metal azides, which are salts of hydrazoic...Ch. 16 - Boric acid, B(OH)3, is used as a mild antiseptic....Ch. 16 - Formic acid, HCHO2, is used to make methyl formate...Ch. 16 - C6H4NH2COOH, para-aminobenzoic acid (PABA), is...Ch. 16 - Barbituric acid. HC4H3N2O3, is used to prepare...Ch. 16 - A solution of acetic acid, HC2H3O2, on a...Ch. 16 - A chemist wanted to determine the concentration of...Ch. 16 - Hydrofluoric acid, HF, unlike hydrochloric acid,...Ch. 16 - Chloroacetic acid, HC2H2ClO2, has a greater acid...Ch. 16 - What is the hydronium-ion concentration of a 2.00...Ch. 16 - What is the hydronium-ion concentration of a 3.00 ...Ch. 16 - Phthalic acid, H2C8H4O4, is a diprotic acid used...Ch. 16 - Carbonic acid, H2CO3, can be found in a wide...Ch. 16 - Write the chemical equation for the base...Ch. 16 - Write the chemical equation for the base...Ch. 16 - Butylamine, C4H3NH2 is a weak base. A 0.47 M...Ch. 16 - Trimethylamine, (CH3)3N, is a gas with a fishy,...Ch. 16 - What is the concentration of hydroxide ion in a...Ch. 16 - What is the concentration of hydroxide ion in a...Ch. 16 - Note whether hydrolysis occurs for each of the...Ch. 16 - Note whether hydrolysis occurs for each of the...Ch. 16 - Prob. 16.57QPCh. 16 - Prob. 16.58QPCh. 16 - For each of the following salts, indicate whether...Ch. 16 - Note whether the aqueous solution of each of the...Ch. 16 - Decide whether solutions of the following salts...Ch. 16 - Decide whether solutions of the following salts...Ch. 16 - Obtain a the Kb value for NO2; b the Ka value for...Ch. 16 - Prob. 16.64QPCh. 16 - What is the pH of a 0.025 M aqueous solution of...Ch. 16 - Calculate the OH concentration and pH of a 0.0025...Ch. 16 - Calculate the concentration of pyridine, C5H5N, in...Ch. 16 - What is the pH of a 0.30 M solution of...Ch. 16 - Calculate the degree of ionization of a 0.75 M HF...Ch. 16 - Calculate the degree of ionization of a 0.22 M...Ch. 16 - What is the pH of a solution that is 0.600 M HCHO2...Ch. 16 - What is the pH of a solution that is 0.20 M KOCN...Ch. 16 - What is the pH of a solution that is 0.10 M CH3NH2...Ch. 16 - What is the pH of a solution that is 0.15 M...Ch. 16 - A buffer is prepared by adding 39.8 mL of 0.75 M...Ch. 16 - A buffer is prepared by adding 115 mL of 0.30 M...Ch. 16 - What is the pH of a buffer solution that is 0.10 M...Ch. 16 - A buffer is prepared by mixing 525 mL of 0.50 M...Ch. 16 - What is the pH of a buffer solution that is 0.15 M...Ch. 16 - What is the pH of a buffer solution that is 0.10 M...Ch. 16 - What is the pH of a buffer solution that is 0.15 M...Ch. 16 - What is the pH of a buffer solution that is 0.15 M...Ch. 16 - How many moles of sodium acetate must be added to...Ch. 16 - How many moles of hydrofluoric acid, HF, must be...Ch. 16 - What is the pH of a solution in which 15 mL of...Ch. 16 - What is the pH of a solution in which 35 mL of...Ch. 16 - A 1.24-g sample of benzoic acid was dissolved in...Ch. 16 - A 0.400-g sample of propionic acid was dissolved...Ch. 16 - Find the pH of the solution obtained when 32 mL of...Ch. 16 - What is the pH at the equivalence point when 22 mL...Ch. 16 - A 50.0-mL sample of a 0.100 M solution of NaCN is...Ch. 16 - Sodium benzoate, NaC7H5O2, is used as a...Ch. 16 - Calculate the pH of a solution obtained by mixing...Ch. 16 - Calculate the pH of a solution obtained by mixing...Ch. 16 - Salicylic acid, C6H4OHCOOH, is used in the...Ch. 16 - Cyanoacetic acid, CH2CNCOOH, is used in the...Ch. 16 - A 0.050 M aqueous solution of sodium hydrogen...Ch. 16 - A 0.10 M aqueous solution of sodium dihydrogen...Ch. 16 - Prob. 16.99QPCh. 16 - Calculate the base-ionization constants for PO43...Ch. 16 - Calculate the pH of a 0.072 M aqueous solution of...Ch. 16 - Calculate the pH of a 0.10 M aqueous solution of...Ch. 16 - An artificial fruit beverage contains 11.0 g of...Ch. 16 - A buffer is made by dissolving 12.5 g of sodium...Ch. 16 - Blood contains several acid base systems that tend...Ch. 16 - Codeine, C23H21NO3, is an alkaloid (Kb = 6 2 109)...Ch. 16 - Calculate the pH of a solution obtained by mixing...Ch. 16 - Calculate the pH of a solution made up from 2.0 g...Ch. 16 - Find the pH of the solution obtained when 25 mL of...Ch. 16 - What is the pH of the solution obtained by...Ch. 16 - Ionization of the first proton from H2SO4 is...Ch. 16 - Ionization of the first proton from H2SeO4 is...Ch. 16 - Methylammonium chloride is a salt of methylamine,...Ch. 16 - Sodium benzoate is a salt of benzoic acid,...Ch. 16 - Each of the following statements concerns a 0.010...Ch. 16 - Each of the following statements concerns a 0.10 M...Ch. 16 - A 0.288-g sample of an unknown monoprotic organic...Ch. 16 - A 0.239-g sample of unknown organic base is...Ch. 16 - a Draw a pH titration curve that represents the...Ch. 16 - a Draw a pH titration curve that represents the...Ch. 16 - The equilibrium equations and Ka values for three...Ch. 16 - Prob. 16.122QPCh. 16 - A 25.0-mL sample of hydroxylamine is titrated to...Ch. 16 - A 25.00-mL sample contains 0.562 g of NaHCO3. This...Ch. 16 - A solution made up of 1.0 M NH3 and 0.50 M...Ch. 16 - A solution is prepared from 0.150 mol of formic...Ch. 16 - An important component of blood is the buffer...Ch. 16 - An important component of blood is the buffer...Ch. 16 - Tartaric acid is a weak diprotic fruit acid with...Ch. 16 - Malic acid is a weak diprotic organic acid with...Ch. 16 - A quantity of 0.25 M sodium hydroxide is added to...Ch. 16 - A quantity of 0.15 M hydrochloric acid is added to...Ch. 16 - Prob. 16.133QPCh. 16 - Prob. 16.134QPCh. 16 - A 30.0-mL sample of 0.05 M HClO is titrated by a...Ch. 16 - Prob. 16.136QPCh. 16 - Prob. 16.137QPCh. 16 - Calculate the pH of a solution made by mixing 0.62...Ch. 16 - Cyanic acid, HOCN, is a weak acid with a Ka value...Ch. 16 - The Kb for NH3 is 1.8 105 at 25C. Calculate the...Ch. 16 - Ka for formic acid is 1.7 104 at 25C. A buffer is...Ch. 16 - K4 for acetic acid is 1.7 105 at 25C. A buffer...Ch. 16 - Prob. 16.143QPCh. 16 - Prob. 16.144QPCh. 16 - Prob. 16.145QPCh. 16 - Two samples of 1.00 M HCl of equivalent volumes...Ch. 16 - Prob. 16.147QPCh. 16 - Prob. 16.148QPCh. 16 - A solution of weak base is titrated to the...Ch. 16 - A buffer solution is prepared by mixing equal...Ch. 16 - The pH of a white vinegar solution is 2.45. This...Ch. 16 - The pH of a household cleaning solution is 11.50....Ch. 16 - What is the freezing point of 0.92 M aqueous...Ch. 16 - Prob. 16.154QPCh. 16 - A chemist needs a buffer with pH 4.35. How many...Ch. 16 - A chemist needs a buffer with pH 3.50. How many...Ch. 16 - Weak base B has a pKb of 6.78 and weak acid HA has...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry: Principles and Practice
    Chemistry
    ISBN:9780534420123
    Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
  • Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry for Engineering Students
    Chemistry
    ISBN:9781337398909
    Author:Lawrence S. Brown, Tom Holme
    Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY