EBK CHEMISTRY
EBK CHEMISTRY
1st Edition
ISBN: 9780133888584
Author: Tro
Publisher: VST
Question
Book Icon
Chapter 16, Problem 14E
Interpretation Introduction

Interpretation: Consider the following condition and find out the direction of the reaction

(1) Q < K

(2) Q > K

(3) Q = K

Concept introduction: Equilibrium is the condition at which the concentration of the reactant and the product are equal and the reaction can in move either forward means towards product formation or backward reaction means towards reactant formation.

Equilibrium constant Kc is defined as the ratio of the concentrations of the products raised to the power of their stoichiometric coefficients and reactants raised to the power of their stoichiometric coefficients.

Reaction quotient Q is defined as the ratio at any point of the reaction of the concentration of the product raised to the power of their stoichiometric coefficients and reactant raised to the power of their stoichiometric coefficients.

aA + bB→cC + dD

Kc=[ C ]c[ D ]d[ A ]a[ B ]b, equilibrium

Q=[ C ]c[ D ]d[ A ]a[ B ]b

To find: The direction of reaction shift at different value of the reaction quotient and the equilibrium constant.

Blurred answer
Students have asked these similar questions
need help not sure what am doing wrong step by step please answer is 971A During the lecture, we calculated the Debye length at physiological salt concentrations and temperature, i.e. at an ionic strength of 150 mM (i.e. 0.150 mol/l) and a temperature of T=310 K. We predicted that electrostatic interactions are effectively screened beyond distances of 8.1 Å in solutions with a physiological salt concentration. What is the Debye length in a sample of distilled water with an ionic strength of 10.0 µM (i.e. 1.00 * 10-5 mol/l)? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).
Influence of salt concentrations on electrostatic interactions 2 Answer is 2.17A why not sure step by step please  What is the Debye length in a concentrated salt solution with an ionic strength of 2.00 mol/l? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).
The name of the following molecule is: Ν

Chapter 16 Solutions

EBK CHEMISTRY

Ch. 16 - What is the effect of adding helium gas (at...Ch. 16 - Prob. 12SAQCh. 16 - How does a developing fetus get oxygen in the...Ch. 16 - What is dynamic equilibrium? Why is it called...Ch. 16 - Give the general expression for the equilibrium...Ch. 16 - What is the significance of the equilibrium...Ch. 16 - What happens to the value of the equilibrium...Ch. 16 - If two reactions sum to an overall reaction, and...Ch. 16 - Explain the difference between Kcand Kp. For a...Ch. 16 - What units should you use when expressing...Ch. 16 - Why do we omit the concentrations of solids and...Ch. 16 - Does the value of the equilibrium constant depend...Ch. 16 - Explain how you might deduce the equilibrium...Ch. 16 - What is the definition of the reaction quotient ()...Ch. 16 - What is the value of when each reactant and...Ch. 16 - Prob. 14ECh. 16 - Many equilibrium calculations involve finding the...Ch. 16 - In equilibrium problems involving equilibrium...Ch. 16 - What happens to a chemical system at equilibrium...Ch. 16 - What is the effect of a change in concentration of...Ch. 16 - What is the effect of a change in volume on a...Ch. 16 - What is the effect of temperature change on a...Ch. 16 - Write an expression for the equilibrium constant...Ch. 16 - Find and fix each mistake in the equilibrium...Ch. 16 - When the reaction comes to equilibrium, will the...Ch. 16 - Ethene (C2H4) can be halogenated by this reaction:...Ch. 16 - H2 and I2 are combined in a flask and allowed to...Ch. 16 - A chemist trying to synthesize a particular...Ch. 16 - This reaction has an equilibrium constant of...Ch. 16 - This reaction has an equilibrium constant of...Ch. 16 - Prob. 29ECh. 16 - Use the following reactions and their equilibrium...Ch. 16 - Calculate Kc for reaction a. I2(g)2I(g)Kp=6.261022...Ch. 16 - Calculate Kpfor each reaction. a. N2O4(g)2NO2(g)...Ch. 16 - Write an equilibrium expression for each chemical...Ch. 16 - Find and fix the mistake in the equilibrium...Ch. 16 - Consider the reaction: CO(g)+2H2(g)CH3OH(g) An...Ch. 16 - Consider the reaction: NH4HS(s)NH3(g)+H2S(g) An...Ch. 16 - Consider the reaction: N2(g)+3H2(g)2NH3(g)...Ch. 16 - Consider the reaction: H2(g)+I2(g)2HI(g) Complete...Ch. 16 - Consider the reaction: 2NO(g)+Br2(g)2NOBr(g)Kp=...Ch. 16 - Consider the reaction:...Ch. 16 - For the reaction A(g)2B(g) , a reaction vessel...Ch. 16 - For the reaction 2A(g)B(g)+2C(g) , a reaction...Ch. 16 - Consider the reaction:...Ch. 16 - Consider the reaction: SO2Cl2(g)SO2+Cl2(g) A...Ch. 16 - Consider the reaction: H2(g)+I2(g)2HI(g) A...Ch. 16 - Consider the reaction. CO(g)+2H2(g)CH3OH(g) A...Ch. 16 - Consider the reaction: NH4HS(s)NH3(g)+H2S(g) At a...Ch. 16 - Consider the reaction:...Ch. 16 - Silver sulfate dissolves in water according to the...Ch. 16 - Nitrogen dioxide reacts with itself according to...Ch. 16 - Consider the reaction and the associated...Ch. 16 - Consider the reaction and the associated...Ch. 16 - For the reaction Kc= 0.513 at 500K. N2O4(g)2NO2(g)...Ch. 16 - For the reaction, Kc= 255 at 1000 K...Ch. 16 - Consider the reaction: NiO(s)+CO(g)Ni(s)+CO2(g)...Ch. 16 - Consider the reaction: CO(g)+H2O(g)CO2(g)+H2(g)Kc=...Ch. 16 - Consider the reaction: HC 2 H 3 O 2 (aq)+ H 2 O(l)...Ch. 16 - Prob. 58ECh. 16 - Consider the reaction:...Ch. 16 - Consider the reaction:...Ch. 16 - Consider the reaction: A(g)B(g)+C(g) Find the...Ch. 16 - Consider the reaction: A(g)2B(g) Find the...Ch. 16 - Consider this reaction at equilibrium:...Ch. 16 - Consider this reaction at equilibrium:...Ch. 16 - Consider this reaction at equilibrium:...Ch. 16 - Prob. 66ECh. 16 - Each reaction is allowed to come to equilibrium,...Ch. 16 - Prob. 68ECh. 16 - This reaction is endothermic: C(s)+CO2(g)2CO(g)...Ch. 16 - This reaction is exothermic:...Ch. 16 - Coal, which is primarily carbon, can be converted...Ch. 16 - Coal can be used to generate hydrogen gas (a...Ch. 16 - Carbon monoxide replaces oxygen in oxygenated...Ch. 16 - Nitrogen monoxide is a pollutant in the lower...Ch. 16 - The reaction CO2(g)+C(s)2CO(g) has Kp= 5.78 at...Ch. 16 - A mixture of water and graphite is heated to 600...Ch. 16 - At 650 K, the reaction MgCO3(s)MgO(s)+CO2(g) has...Ch. 16 - A system at equilibrium contains I2(g) at a...Ch. 16 - Consider the exothermic reaction:...Ch. 16 - Consider the endothermic reaction:...Ch. 16 - Consider the reaction: H2(g)+I2(g)2HI(g) A...Ch. 16 - Prob. 82ECh. 16 - Prob. 83ECh. 16 - Prob. 84ECh. 16 - The system described by the reaction:...Ch. 16 - A reaction vessel at 27017°C contains a mixture of...Ch. 16 - At 70 K, CCl4 decomposes to carbon and chlorine....Ch. 16 - The equilibrium constant for the reaction...Ch. 16 - A sample of CaCO3(s) is introduced into a sealed...Ch. 16 - An equilibrium mixture contains N2O4, (P = O.28)...Ch. 16 - Carbon monoxide and chlorine gas react to form...Ch. 16 - Prob. 92ECh. 16 - Prob. 93ECh. 16 - Prob. 94ECh. 16 - Nitrogen monoxide reacts with chlorine gas...Ch. 16 - At a given temperature, a system containing O2(g)...Ch. 16 - A sample of pure NO2 is heated to 337 °C, at which...Ch. 16 - When N2O5(g) is heated, it dissociates into...Ch. 16 - A sample of SO3 is introduced into an evacuated...Ch. 16 - A reaction A(g)B(g) has an equilibrium constant of...Ch. 16 - The reaction A(g)2B(g) has an equilibrium constant...Ch. 16 - A particular reaction has an equilibrium constant...Ch. 16 - Consider the reaction: aA(g)bB(g) Each of the...Ch. 16 - Consider the simple one-step reaction: A(g)B(g)...
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Physical Chemistry
    Chemistry
    ISBN:9781133958437
    Author:Ball, David W. (david Warren), BAER, Tomas
    Publisher:Wadsworth Cengage Learning,
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry: Principles and Reactions
    Chemistry
    ISBN:9781305079373
    Author:William L. Masterton, Cecile N. Hurley
    Publisher:Cengage Learning
    Text book image
    Principles of Instrumental Analysis
    Chemistry
    ISBN:9781305577213
    Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
    Publisher:Cengage Learning
Text book image
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning