The mathematical relation between solubility product, K sp and molar solubility, s are given. The example of a salt for each mathematical representation is to be given with reference to Table 15-1 . Concept introduction: At equilibrium, the measure of maximum amount of solute that is to be dissolved in a solvent is known as solubility. Solubility product is defined as the product of concentration of ions in a saturated solution where each ion is raised to the power of their coefficients.
The mathematical relation between solubility product, K sp and molar solubility, s are given. The example of a salt for each mathematical representation is to be given with reference to Table 15-1 . Concept introduction: At equilibrium, the measure of maximum amount of solute that is to be dissolved in a solvent is known as solubility. Solubility product is defined as the product of concentration of ions in a saturated solution where each ion is raised to the power of their coefficients.
Solution Summary: The author explains the mathematical relation between solubility product, K_sp and molar
Interpretation: The mathematical relation between solubility product,
Ksp and molar solubility,
s are given. The example of a salt for each mathematical representation is to be given with reference to Table
15-1.
Concept introduction: At equilibrium, the measure of maximum amount of solute that is to be dissolved in a solvent is known as solubility. Solubility product is defined as the product of concentration of ions in a saturated solution where each ion is raised to the power of their coefficients.
(ii)
Interpretation Introduction
Interpretation: The mathematical relation between solubility product,
Ksp and molar solubility,
s are given. The example of a salt for each mathematical representation is to be given with reference to Table
15-1.
Concept introduction: At equilibrium, the measure of maximum amount of solute that is to be dissolved in a solvent is known as solubility. Solubility product is defined as the product of concentration of ions in a saturated solution where each ion is raised to the power of their coefficients.
(iii)
Interpretation Introduction
Interpretation: The mathematical relation between solubility product,
Ksp and molar solubility,
s are given. The example of a salt for each mathematical representation is to be given with reference to Table
15-1.
Concept introduction: At equilibrium, the measure of maximum amount of solute that is to be dissolved in a solvent is known as solubility. Solubility product is defined as the product of concentration of ions in a saturated solution where each ion is raised to the power of their coefficients.
(iv)
Interpretation Introduction
Interpretation: The mathematical relation between solubility product,
Ksp and molar solubility,
s are given. The example of a salt for each mathematical representation is to be given with reference to Table
15-1.
Concept introduction: At equilibrium, the measure of maximum amount of solute that is to be dissolved in a solvent is known as solubility. Solubility product is defined as the product of concentration of ions in a saturated solution where each ion is raised to the power of their coefficients.
Determine the molar solubility for Ag:CrO. (Ksp = 1.2 × 10 12).
PREV
1
2
3
Based on your ICE table and Ksp expression, determine the molar solubility.
SAg:Cr.O. =
M
5 RESET
1.2 x 10
1.1 x 10
1.1 x 10
6.7 x 105
5.3 x 10
7.7 x 107
Calculate the molar solubility of lead(II) iodide in water at 25° given that Ksp = 7.1 x 10-9 and Calculate the molar solubility of Mg(OH)2 (Ksp = 1.8 * 10-11) in 0.0862 M MgCl2