College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16, Problem 10P
In one cycle, a freezer uses 785 J of electrical energy in order to remove 1750 J of heat from its freezer compartment at 10°F. (a) What is the coefficient of performance of this freezer? (b) How much heat does it expel into the room during this cycle?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?
No chatgpt pls will upvote
Correct answer
No chatgpt pls will upvote
Chapter 16 Solutions
College Physics (10th Edition)
Ch. 16 - Under what conditions will the entropy of a gas...Ch. 16 - In what ways is a heat pump different from (or...Ch. 16 - Prob. 3CQCh. 16 - A growing plant creates a highly complex and...Ch. 16 - Why must a room air conditioner be placed in a...Ch. 16 - If you pour a cup of hot water into a cup of cold...Ch. 16 - How can the thermal conduction of heat from a hot...Ch. 16 - How can the free expansion of a gas into a vacuum...Ch. 16 - Does the second law of thermodynamics say that...Ch. 16 - Prob. 10CQ
Ch. 16 - Prob. 11CQCh. 16 - What would be the efficiency of a Carnot engine...Ch. 16 - The first law of thermodynamics is sometimes...Ch. 16 - Would it be more economical to run a refrigerator...Ch. 16 - An insulated box has a carrier that confines a gas...Ch. 16 - Prob. 2MCPCh. 16 - Carnot engine A operates between temperatures of...Ch. 16 - Prob. 4MCPCh. 16 - Prob. 5MCPCh. 16 - You want to increase the efficiency of a Carnot...Ch. 16 - Prob. 7MCPCh. 16 - You perform 100 J of work on a refrigerator that...Ch. 16 - If you mix cold milk with hot coffee in an...Ch. 16 - A glass of water left outside on a cold night...Ch. 16 - Prob. 11MCPCh. 16 - Prob. 12MCPCh. 16 - A coal-fired power plant that operates at an...Ch. 16 - Each cycle, a certain heat engine expels 250 J of...Ch. 16 - A diesel engine performs 2200 J of mechanical work...Ch. 16 - An aircraft engine has a heat efficiency of e =...Ch. 16 - A certain nuclear power plant has a thermal...Ch. 16 - Figure 16.15 shows a pV diagram for a heat engine...Ch. 16 - The pV diagram in Figure 16.16 shows a cycle of a...Ch. 16 - A gasoline engine. A gasoline engine takes in 1.61...Ch. 16 - A gasoline engine has a power output of 180 kW...Ch. 16 - In one cycle, a freezer uses 785 J of electrical...Ch. 16 - A refrigerator has a coefficient of performance of...Ch. 16 - Prob. 12PCh. 16 - A freezer has a coefficient of performance of...Ch. 16 - A cooing unit for chilling the water of an...Ch. 16 - A Carnot engine whose high-temperature reservoir...Ch. 16 - A heat engine is to be built to extract energy...Ch. 16 - A Carnot engine is operated between two heat...Ch. 16 - A Carnot engine has an efficiency of 59% and...Ch. 16 - An ice-making machine operates as a Carnot...Ch. 16 - A Carnot freezer that runs on electricity removes...Ch. 16 - Set Up: For an engine, W and QH positive and QC is...Ch. 16 - A sophomore with nothing better to do adds heat to...Ch. 16 - A 4.50 kg block of ice at 0.00C falls into the...Ch. 16 - You decide to take a nice hot bath but discover...Ch. 16 - A crucible contains 0.1 kg of liquid lead that is...Ch. 16 - Three moles of an ideal gas undergo a reversible...Ch. 16 - Entropy change due to driving. Premium gasoline...Ch. 16 - Entropy change from a doughnut. A typical doughnut...Ch. 16 - Solar collectors. A well-insulated house of...Ch. 16 - Prob. 30PCh. 16 - An experimental power plant at the Natural Energy...Ch. 16 - Solar water heater. A solar water heater for...Ch. 16 - You are designing a Carnal engine that has 2 mol...Ch. 16 - A heat engine takes 0.350 mol of an ideal diatomic...Ch. 16 - As a budding mechanical engineer, you are called...Ch. 16 - Prob. 36GPCh. 16 - A Carnot engine operates between two heat...Ch. 16 - An engineer is working with a Carnot engine that...Ch. 16 - Human entropy. A person having skin of surface...Ch. 16 - A typical coal-fired power plant generates 1000 MW...Ch. 16 - A human engine. You decide to use your body as a...Ch. 16 - One end of a copper rod is immersed in boiling...Ch. 16 - The pV diagram in Figure 16.19 shows a heat engine...Ch. 16 - Passage Problems Power from the sea. Ocean thermal...Ch. 16 - What is the change in entropy of the ammonia...Ch. 16 - Compare the entropy change of the warmer water to...Ch. 16 - If the proposed plant is built and produces 10 MW...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Define histology.
Fundamentals of Anatomy & Physiology (11th Edition)
Although many chimpanzees live in environments with oil palm nuts, members of only a few populations use stones...
Campbell Biology (11th Edition)
Which one of the following is not a fuel produced by microorganisms? a. algal oil b. ethanol c. hydrogen d. met...
Microbiology: An Introduction
All of the following terms can appropriately describe humans except: a. primary consumer b. autotroph c. hetero...
Human Biology: Concepts and Current Issues (8th Edition)
If all of Earths nitrogen-fixing prokaryotes were to die suddenly, what would happen to the concentration of ni...
Biology: Life on Earth with Physiology (11th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.arrow_forwardLab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forward
- Use the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardNo chatgpt pls will upvotearrow_forwardA beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .arrow_forward
- An aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?arrow_forwardROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forwardQuestion B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forward
- SECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY