Bundle: Introductory Chemistry: A Foundation, Loose-leaf Version, 9th + OWLv2 with MindTap Reader, 1 term (6 months) Printed Access Card
Bundle: Introductory Chemistry: A Foundation, Loose-leaf Version, 9th + OWLv2 with MindTap Reader, 1 term (6 months) Printed Access Card
9th Edition
ISBN: 9780357000922
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 16, Problem 100AP

. For each hydrogen or hydroxide ion concentration listed. calculate the concentration of the complementary ion and the pH and pOH of the solution.

a. [ H + ] = 5.72 × 10 4 M

b. [ OH - ] = 8.91 × 10 5 M c. [ H + ] = 2.87 × 10 12 M d. [ OH - ] = 7.22 × 10 8 M

Expert Solution
Check Mark
Interpretation Introduction

(a)

Interpretation:

The concentration of complementary ion, pH and pOH of solution should be calculated.

Concept Introduction:

The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.

The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:

pH=logH+

Here, H+ is concentration of hydrogen ion.

Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:

pOH=logOH

Here, OH is concentration of hydroxide ion.

pH and pOH of a solution are related to each other as follows:

pH+pOH=14

In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the pH value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.

Answer to Problem 100AP

For the given hydrogen ion concentration, pH, pOH and hydroxide ion concentration is 3.24, 10.76 and 1.74×1011 M respectively.

Explanation of Solution

Given Information:

The hydrogen ion concentration is 5.72×104 M

Calculation:

The pH of solution can be calculated as follows:

pH=logH+

Putting the value,

pH=log5.72×104=3.24

Therefore, pH of solution is 3.24.

From pH, pOH can be calculated as follows:

pOH=14pH

Putting the value,

pOH=143.24=10.76

Therefore, pOH of solution is 10.76.

Now, form pOH, hydroxide ion concentration can be calculated as follows:

OH=10pOH

Putting the value,

OH=1010.76=1.74×1011 M

Therefore, for the given hydrogen ion concentration, pH, pOH and hydroxide ion concentration is 3.24, 10.76 and 1.74×1011 M respectively.

Expert Solution
Check Mark
Interpretation Introduction

(b)

Interpretation:

The concentration of complementary ion, pH and pOH of solution should be calculated.

Concept Introduction:

The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.

The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:

pH=logH+

Here, H+ is concentration of hydrogen ion.

Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:

pOH=logOH

Here, OH is concentration of hydroxide ion.

pH and pOH of a solution are related to each other as follows:

pH+pOH=14

In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the pH value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.

Answer to Problem 100AP

For given hydroxide ion concentration, pOH, pH and hydrogen ion concentration is 4.05, 9.95 and 1.12×1010 M respectively.

Explanation of Solution

Given Information:

The hydroxide ion concentration is 8.91×105 M.

Calculation:

From the hydroxide ion concentration, first pOH can be calculated as follows:

pOH=logOH

Putting the value,

pOH=log8.91×105=4.05

From pOH of solution, pH can be calculated as follows:

pH+pOH=14

On rearranging,

pH=14pOH

Putting the values,

pH=144.05=9.95

Therefore, pH of solution is 9.95.

Now, from pH, hydrogen ion concentration can be calculated as follows:

H+=10pH

Putting the value,

H+=109.95=1.12×1010 M

Therefore, for given hydroxide ion concentration, pOH, pH and hydrogen ion concentration is 4.05, 9.95 and 1.12×1010 M respectively.

Expert Solution
Check Mark
Interpretation Introduction

(c)

Interpretation:

The concentration of complementary ion, pH and pOH of solution should be calculated.

Concept Introduction:

The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.

The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:

pH=logH+

Here, H+ is concentration of hydrogen ion.

Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:

pOH=logOH

Here, OH is concentration of hydroxide ion.

pH and pOH of a solution are related to each other as follows:

pH+pOH=14

In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the pH value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.

Answer to Problem 100AP

For the given hydrogen ion concentration, pH, pOH and hydroxide ion concentration is 11.54, 2.46 and 3.47×103 M respectively.

Explanation of Solution

Given Information:

The hydrogen ion concentration is 2.87×1012 M

Calculation:

The pH of solution can be calculated as follows:

pH=logH+

Putting the value,

pH=log2.87×1012=11.54

Therefore, pH of solution is 11.54.

From pH, pOH can be calculated as follows:

pOH=14pH

Putting the value,

pOH=1411.54=2.46

Therefore, pOH of solution is 2.46.

Now, form pOH, hydroxide ion concentration can be calculated as follows:

OH=10pOH

Putting the value,

OH=102.46=3.47×103 M

Therefore, for the given hydrogen ion concentration, pH, pOH and hydroxide ion concentration is 11.54, 2.46 and 3.47×103 M respectively.

Expert Solution
Check Mark
Interpretation Introduction

(d)

Interpretation:

The concentration of complementary ion, pH and pOH of solution should be calculated.

Concept Introduction:

The concentration of hydrogen ions in a solution determines the acidity of a solution. If concentration of hydrogen ion is more than the solution is more acetic, if it is low, solution is less acidic.

The pH of solution is defined as negative log of hydrogen ion concentration thus, it can be calculated as follows:

pH=logH+

Here, H+ is concentration of hydrogen ion.

Similarly, pOH of a solution is defined as negative log of hydroxide ion concentration thus, it can be calculated as follows:

pOH=logOH

Here, OH is concentration of hydroxide ion.

pH and pOH of a solution are related to each other as follows:

pH+pOH=14

In a pH scale, if the value of pH is below 7 the solution is said to be acidic in nature, if the pH value is above 7 it is said to be basic in nature. At pH 7, the solution is neutral.

Answer to Problem 100AP

For the given hydrogen ion concentration, pH, pOH and hydroxide ion concentration is 11.54, 2.46 and 3.47×103 M respectively.

Explanation of Solution

Given Information:

The hydroxide ion concentration is 7.22×108 M.

For given hydroxide ion concentration, pOH, pH and hydrogen ion concentration is 7.14, 6.86 and 1.38×107 M respectively.

Calculation:

From the hydroxide ion concentration, first pOH can be calculated as follows:

pOH=logOH

Putting the value,

pOH=log7.22×108=7.14

From pOH of solution, pH can be calculated as follows:

pH+pOH=14

On rearranging,

pH=14pOH

Putting the values,

pH=147.14=6.86

Therefore, pH of solution is 6.86.

Now, from pH, hydrogen ion concentration can be calculated as follows:

H+=10pH

Putting the value,

H+=106.86=1.38×107 M

Therefore, for given hydroxide ion concentration, pOH, pH and hydrogen ion concentration is 7.14, 6.86 and 1.38×107 M respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 16 Solutions

Bundle: Introductory Chemistry: A Foundation, Loose-leaf Version, 9th + OWLv2 with MindTap Reader, 1 term (6 months) Printed Access Card

Ch. 16 - Explain why Cl- does not affect the pH of an...Ch. 16 - Write the general reaction for an acid acting in...Ch. 16 - Differentiate among the terms concentrated,...Ch. 16 - What is meant by “pH”? True or false: A strong...Ch. 16 - Consider two separate solutions: one containing a...Ch. 16 - Prob. 7ALQCh. 16 - Prob. 8ALQCh. 16 - Stanley’s grade-point average (GPA) is 3.28. What...Ch. 16 - Prob. 10ALQCh. 16 - . Mixing together aqueous solutions of acetic acid...Ch. 16 - Prob. 12ALQCh. 16 - . Consider the equation:...Ch. 16 - . Choose the answer that best completes the...Ch. 16 - Prob. 15ALQCh. 16 - . The following figures are molecular-level...Ch. 16 - Prob. 17ALQCh. 16 - What are some physical properties that...Ch. 16 - Write an equation showing how HCl(g) behaves as an...Ch. 16 - Prob. 3QAPCh. 16 - How do the components of a conjugate acid—base...Ch. 16 - 5. Given the general equation illustrating the...Ch. 16 - According to Arrhenius, ____________ produce...Ch. 16 - Which of the following do not represent a...Ch. 16 - Which of the following do not represent a...Ch. 16 - In each of the following chemical equations,...Ch. 16 - . In each of the following chemical equations,...Ch. 16 - . Write the conjugate acid for each of the...Ch. 16 - . Write the conjugate acid for each of the...Ch. 16 - Prob. 13QAPCh. 16 - . Write the conjugate base for each of the...Ch. 16 - . Write a chemical equation showing how each of...Ch. 16 - . Write a chemical equation showing how each of...Ch. 16 - . What does it mean to say that an acid is strong...Ch. 16 - Prob. 18QAPCh. 16 - . How is the strength of an acid related to the...Ch. 16 - . A strong acid has a weak conjugate base, whereas...Ch. 16 - . Write the formula for the hydronium ion. Write...Ch. 16 - Prob. 22QAPCh. 16 - . Organic acids contain the carboxyl group Using...Ch. 16 - Prob. 24QAPCh. 16 - 25. Which of the following acids have relatively...Ch. 16 - . The “Chemistry in Focus” segment Plants Fight...Ch. 16 - . Water is the most common amphoteric substance,...Ch. 16 - . Anions containing hydrogen (for example. HCO3and...Ch. 16 - . What is meant by the iou-product constant for...Ch. 16 - . What happens to the hydroxide ion concentration...Ch. 16 - Prob. 31QAPCh. 16 - Prob. 32QAPCh. 16 - . Calculate the [OH-] in each of the following...Ch. 16 - . Calculate the [OH-] in each of the following...Ch. 16 - 35. For each pair of concentrations, tell which...Ch. 16 - . For each pair of concentrations, tell which...Ch. 16 - . Why do scientists tend to express the acidity of...Ch. 16 - . Using Fig. 16.3, list the approximate pH value...Ch. 16 - . For a hydrogen ion concentration of 2.33106M,...Ch. 16 - . The “Chemistry in Focus” segment Garden-Variety...Ch. 16 - . Calculate the pH corresponding to each of the...Ch. 16 - Prob. 42QAPCh. 16 - Prob. 43QAPCh. 16 - Prob. 44QAPCh. 16 - Prob. 45QAPCh. 16 - . Calculate the pOH value corresponding to each of...Ch. 16 - . For each hydrogen ion concentration listed,...Ch. 16 - . For each hydrogen ion concentration listed,...Ch. 16 - . Calculate the hydrogen ion concentration, in...Ch. 16 - . Calculate the hydrogen ion concentration, in...Ch. 16 - . Calculate the hydrogen ion concentration, in...Ch. 16 - . Calculate the hydrogen ion concentration, in...Ch. 16 - . Calculate the pH of each of the following...Ch. 16 - Prob. 54QAPCh. 16 - 55. When 1 mole of gaseous hydrogen chloride is...Ch. 16 - . A bottle of acid solution is labeled “3 M HNO3.”...Ch. 16 - . Calculate the hydrogen ion concentration and the...Ch. 16 - . Calculate the pH of each of the following...Ch. 16 - . What characteristic properties do buffered...Ch. 16 - Prob. 60QAPCh. 16 - . Which component of a buffered solution is...Ch. 16 - Prob. 62QAPCh. 16 - . Which of the following combinations would act as...Ch. 16 - . A buffered solution is prepared containing...Ch. 16 - . The concepts of acid-base equilibria were...Ch. 16 - . Strong buses are bases that completely ionize in...Ch. 16 - Prob. 67APCh. 16 - Prob. 68APCh. 16 - Prob. 69APCh. 16 - Prob. 70APCh. 16 - Prob. 71APCh. 16 - Prob. 72APCh. 16 - Prob. 73APCh. 16 - Prob. 74APCh. 16 - 75. A conjugate acid-base pair Consists of two...Ch. 16 - . Acetate ion, C2H3O2- , has a stronger affinity...Ch. 16 - Prob. 77APCh. 16 - Prob. 78APCh. 16 - Prob. 79APCh. 16 - Prob. 80APCh. 16 - Prob. 81APCh. 16 - Prob. 82APCh. 16 - Prob. 83APCh. 16 - Prob. 84APCh. 16 - . A(n) _________ solution contains a conjugate...Ch. 16 - . When sodium hydroxide, NaOH, is added dropwise...Ch. 16 - . When hydrochloric acid, HCI. is added dropwise...Ch. 16 - . The following are representations of acid-base...Ch. 16 - . In each of the following chemical equations,...Ch. 16 - Prob. 90APCh. 16 - . Write the conjugate base for each of the...Ch. 16 - . Of the following combinations, which would act...Ch. 16 - Prob. 93APCh. 16 - . Calculate [H+] in each of the following...Ch. 16 - Prob. 95APCh. 16 - . Calculate the pH corresponding to each of the...Ch. 16 - Prob. 97APCh. 16 - Prob. 98APCh. 16 - Prob. 99APCh. 16 - . For each hydrogen or hydroxide ion concentration...Ch. 16 - . Calculate the hydrogen ion concentration, in...Ch. 16 - Prob. 102APCh. 16 - Prob. 103APCh. 16 - Prob. 104APCh. 16 - . Write the formulas for three combinations of...Ch. 16 - . Choose pairs in which the species listed first...Ch. 16 - . Complete the table for each of the following...Ch. 16 - . Consider 0.25 M solutions of the following...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:9781285640686
Author:Skoog
Publisher:Cengage
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781285199030
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY