Concept explainers
Interpretation:
The reason for a mixture of a strong acid and its conjugate base is not buffered should be explained.
Concept Introduction:
A buffer solution can be defined as an aqueous solution which is capable of resisting pH changes upon addition of small amounts of a strong base and a strong acid as well as upon dilution by distilled water(or in general water).The action that corresponds to keep the resistance to any changes on pH is known as “ buffering”. A buffer solution has a distinct definite pH value and hence is valuable in reaction conditions where one needs to maintain the pH value at a constant value. Blood is an example of a natural buffer which usually maintains the pH value around 7.4.
There can be two main kinds of buffer systems depending on the pH values that one needs to achieve in preparation of the buffer solutions. The two main kinds are acidic and basic buffer solutions. In both these kinds of buffer solutions there are two main constituents.
In an acidic buffer a weak acid and its conjugate base are the two main components in the buffer system.
Whereas in a basic buffer solution a weak base and its conjugate acid are the two main components in the buffer system.
In order for a solution to successfully function as a buffer solution it must contain a conjugate acid base pair which involves a weak acid/base.
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
Bundle: Introductory Chemistry: A Foundation, Loose-leaf Version, 9th + OWLv2 with MindTap Reader, 1 term (6 months) Printed Access Card
- Which of these combinations is the best to buffer the pH at approximately 9? Explain your choice. CH3COOH/NaCH3COO HCl/NaCl NH3/NH4Clarrow_forwardSulfanilic acid (NH2C6H4SO3H) is used in manufacturing dyes. It ionizes in water according to the equilibrium equation NH2C6H4SO3H(aq)+H2O(l)NH2C6H4SO3(aq)+H3O+(aq)Ka=5.9104 A buffer is prepared by dissolving 0.20 mol of sulfanilicacid and 0.13 mol of sodium sulfanilate (NaNH2C6H4SO3) in water and diluting to 1.00 L. Compute the pH of the solution. Suppose 0.040 mol of HCl is added to the buffer.Calculate the pH of the solution that results.arrow_forwardA quantity of 0.25 M sodium hydroxide is added to a solution containing 0.15 mol of acetic acid. The final volume of the solution is 375 mL and the pH of this solution is 4.45. a What is the molar concentration of the sodium acetate? b How many milliliters of sodium hydroxide were added to the original solution? c What was the original concentration of the acetic acid?arrow_forward
- Two samples of 1.00 M HCl of equivalent volumes are prepared. One sample is titrated to the equivalence point with a 1.00 M solution of sodium hydroxide, while the other sample is titrated to the equivalence point with a 1.00 M solution of calcium hydroxide. a Compare the volumes of sodium hydroxide and calcium hydroxide required to reach the equivalence point for each titration. b Determine the pH of each solution halfway to the equivalence point. c Determine the pH of each solution at the equivalence point.arrow_forwardConsider a solution prepared by mixing a weak acid HA and HCl. What are the major species? Explain what is occurring in solution. How would you calculate the pH? What if you added NaA to this solution? Then added NaOH?arrow_forwardA buffer solution has a pH value of 9.8. Which value in the set of pH values 8.79.79.89.910.9 is the most likely value for the buffer solution pH after a. a small amount of strong acid has been added? b. a small amount of strong base has been added?arrow_forward
- What is the pH of a buffer that is 0.150 M in a weak acid and 0.150 M in the acids conjugate base? The acids ionization constant is 6.8 106.arrow_forwardMethyl orange, HMO, is a common acid-base indicator. In solution it ionizes according to the equation: HMOaqH+aq+MO-aqredyellow If methyl orange is added to distilled water, the solution turns yellow. If 1 drop or two of 6 M HCl is added to the yellow solution, it turns red. If to that solution one adds a few drops of 6 M NaOH, the color reverts to yellow. a. Why does adding 6 M HCl to the yellow solution of methyl orange tend to cause the color to change to red? Note that in solution HCl exists as H+ and Cl- ions. b. Why does adding 6 M NaOH to the red solution tend to make it turn back to yellow? Note that in solution NaOH exists as Na+ and OH- ions. How does increasing OH- shift Reaction 3 in the discussion section? How would the resulting change in H+ affect the dissociation reaction of HMO?arrow_forwardYou have a solution of the weak acid HA and add some of the salt NaA to it. What are the major species in the solution? What do you need to know to calculate the pH of the solution, and how would you use this information? How does the pH of the solution of just the HA compare with that of the final mixture? Explain.arrow_forward
- A quantity of 0.15 M hydrochloric acid is added to a solution containing 0.10 mol of sodium acetate. Some of the sodium acetate is converted to acetic acid, resulting in a final volume of 650 mL of solution. The pH of the final solution is 4.56. a What is the molar concentration of the acetic acid? b How many milliliters of hydrochloric acid were added to the original solution? c What was the original concentration of the sodium acetate?arrow_forwardUse the data in Table 15.1 to select a conjugate acid-base pair you could use to make buffer solutions having each of these hydrogen ion concentrations. 3.2 × 10−4 M 5.0 × 10−5 M 7.0 × 10−8 M 6.0 × 10−11 Marrow_forwardFor the following, mix equal volumes of one solution from Group I with one solution from Group II to achieve the indicated pH. Calculate the pH of each solution. Group I: 0.20 M NH4Cl, 0.20 M HCl, 0.20 M C6H5NH3Cl, 0.20 M (C2H5)3NHCl Group II: 0.20 M KOI, 0.20 M NaCN, 0.20 M KOCl, 0.20 M NaNO2 a. the solution with the lowest pH b. the solution with the highest pH c. the solution with the pH closest to 7.00arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning