
Concept explainers
Reconsider Prob. 15–82. The combustion products are expanded in an isentropic turbine to 140 kPa. Calculate the work produced by this turbine in kJ/kg fuel.

The work produced by an isentropic turbine.
Answer to Problem 83P
The work produced by an isentropic turbine is
Explanation of Solution
Express the balanced equation.
Here, carbon is
Express the change in entropy of the mixture during the mixture when there is no entropy change during an isentropic process.
Here, final entropy is
Express the change in entropy of the mixture at temperature of
Express the change in entropy of the mixture at temperature of
Express the work produced during the isentropic expansion of combustion gases.
Here, initial and final enthalpy is
Express molar mass of the product gases.
Here, molar mass of carbon dioxide, water, sulfur dioxide, nitrogen and oxygen is
Express the work produced per kg of the fuel.
Conclusion:
Refer Equation (I), and write the number of moles.
Refer Table A-1, “molar mass, gas constant and critical point properties”, and write the molecular masses.
Refer Table A-1, “molar mass, gas constant and critical point properties”, and write the universal gas constant of air.
Substitute
Refer Table A-18, A-19, A-20, A-21, A-22, and A-23, and write the initial and final entropy at temperature of
Components |
|
|
307.992 | 269.215 | |
263.542 | 232.597 | |
251.424 | 228.057 | |
267.891 | 243.471 |
Substitute
Refer Table A-18, A-19, A-20, A-21, A-22, and A-23, and write the initial and final entropy at temperature of
Components |
|
|
307.992 | 297.307 | |
263.542 | 240.333 | |
251.242 | 234.115 | |
267.891 | 249.906 |
Substitute
Perform the interpolation method to obtain the final temperature.
Write the formula of interpolation method of two variables.
Here, the variables denote by x and y is entropy change and final temperature respectively.
Show the final temperature corresponding to entropy change as in Table (3).
Entropy change |
Final temperature |
1000 | |
1200 |
Substitute
Thus, the final temperature is,
Refer Table A-18, A-19, A-20, A-21, A-22, and A-23, and write the initial and final enthalpy during the isentropic expansion of combustion gases from
Components |
|
|
98,160 | 50,189 | |
80,352 | 42,037 | |
63,236 | 34,961 | |
66,223 | 36,527 |
Substitute
Substitute
Substitute
Hence, the work produced by an isentropic turbine is
Want to see more full solutions like this?
Chapter 15 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
- Procedure:1- Cartesian system, 2D3D,type of support2- Free body diagram3 - Find the support reactions4- If you find a negativenumber then flip the force5- Find the internal force3D∑Fx=0∑Fy=0∑Fz=0∑Mx=0∑My=0\Sigma Mz=02D\Sigma Fx=0\Sigma Fy=0\Sigma Mz=05- Use method of sectionand cut the elementwhere you want to findthe internal force andkeep either side of thearrow_forwardProcedure: 1- Cartesian system, 2(D)/(3)D, type of support 2- Free body diagram 3 - Find the support reactions 4- If you find a negative number then flip the force 5- Find the internal force 3D \sum Fx=0 \sum Fy=0 \sum Fz=0 \sum Mx=0 \sum My=0 \Sigma Mz=0 2D \Sigma Fx=0 \Sigma Fy=0 \Sigma Mz=0 5- Use method of section and cut the element where you want to find the internal force and keep either side of the sectionarrow_forwardProcedure: 1- Cartesian system, 2(D)/(3)D, type of support 2- Free body diagram 3 - Find the support reactions 4- If you find a negative number then flip the force 5- Find the internal force 3D \sum Fx=0 \sum Fy=0 \sum Fz=0 \sum Mx=0 \sum My=0 \Sigma Mz=0 2D \Sigma Fx=0 \Sigma Fy=0 \Sigma Mz=0 5- Use method of section and cut the element where you want to find the internal force and keep either side of the sectionarrow_forward
- For each system below with transfer function G(s), plot the pole(s) on the s-plane. and indicate whether the system is: (a) "stable" (i.e., a bounded input will always result in a bounded output), (b) "marginally stable," or (c) "unstable" Sketch a rough graph of the time response to a step input. 8 a) G(s) = 5-5 8 b) G(s) = c) G(s) = = s+5 3s + 8 s² - 2s +2 3s +8 d) G(s): = s²+2s+2 3s+8 e) G(s): = s² +9 f) G(s): 8 00 == Sarrow_forwardPlease answer the following question. Include all work and plase explain. Graphs are provided below. "Consider the Mg (Magnesium) - Ni (Nickel) phase diagram shown below. This phase diagram contains two eutectic reactions and two intermediate phases (Mg2Ni and MgNi2). At a temperature of 505oC, determine what the composition of an alloy would need to be to contain a mass fraction of 0.20 Mg and 0.80 Mg2Ni."arrow_forwardThe triangular plate, having a 90∘∘ angle at AA, supports the load PP = 370 lblb as shown in (Figure 1).arrow_forward
- Design a 4-bar linkage to carry the body in Figure 1 through the two positions P1 and P2 at the angles shown in the figure. Use analytical synthesis with the free choice values z = 1.075, q= 210°, ß2 = −27° for left side and s = 1.24, y= 74°, ½ = − 40° for right side. φ 1.236 P2 147.5° 210° 2.138 P1 Figure 1 Xarrow_forwardDesign a 4-bar linkage to carry the body in Figure 1 through the two positions P1 and P2 at the angles shown in the figure. Use analytical synthesis with the free choice values z = 1.075, q= 210°, B₂ = −27° for left side and s = 1.24, y= 74°, ½ = − 40° for right side. 1.236 P2 147.5° 210° P1 Figure 1 2.138 Xarrow_forwardcan you explain how in a coordinate frame transformation: v = {v_n}^T {n-hat} and then it was found that {n-hat} = [C]^T {b-hat} so v_n = {v_n}^T [C]^T {b-hat}, how does that equation go from that to this --> v_n = [C]^T v_barrow_forward
- 6) If (k = 0,7 cm) find Imax for figure below. 225mm 100mm ثلاثاء. 100mm 150mm 75mm Ans: Tmax=45:27 N/cm F-400 Narrow_forwardThe man has a weight W and stands halfway along the beam. The beam is not smooth, but the planes at A and B are smooth (and plane A is horizontal). Determine the magnitude of the tension in the cord in terms of W and θ.arrow_forwardDetermine the reactions at the two supports for this plate. Express the reactions in Cartesian vector form.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





