
Liquid octane (C8H18) enters a steady-flow combustion chamber at 25°C and 8 atm at a rate of 0.8 kg/min. It is burned with 200 percent excess air that is compressed and preheated to 500 K and 8 atm before entering the combustion chamber. After combustion, the products enter an adiabatic turbine at 1300 K and 8 atm and leave at 950 K and 2 atm. Assuming complete combustion and T0 = 25°C, determine (a) the heat transfer rate from the combustion chamber, (b) the power output of the turbine, and (c) the reversible work and exergy destruction for the entire process.
(a)

The rate of heat transfer from the combustion chamber.
Answer to Problem 114RP
The rate of heat transfer from the combustion chamber is
Explanation of Solution
Write the energy balance equation using steady-flow equation.
Here, the total energy entering the system is
Substitute
Here, the enthalpy of formation for product is
Calculate the molar mass of the
Here, the number of carbon atoms is
Determine the rate of mole flow rates of the product.
Here, the mass flow rate is
Determine the heat transfer rate from the combustion chamber.
Conclusion:
Perform unit conversion of temperature at state 1 from degree Celsius to Kelvin.
For air temperature enter in the combustion chamber,
Write the combustion equation of 1 kmol for
Here, liquid octane is
Express the stoichiometric coefficient of air by
Substitute
Refer Appendix Table A-18, A-19, A-20, and A-23, obtain the enthalpy of formation, at 298 K, 500 K, 950 K, and 1500 K for
Substance | |||||
-249,950 | --- | --- | --- | --- | |
0 | 14,770 | 8682 | 42,033 | 26,652 | |
0 | 14,581 | 8669 | 40,170 | 28,501 | |
-241,820 | --- | 9904 | 48,807 | 33,841 | |
-393,520 | --- | 9364 | 59,552 | 40,070 |
Refer Equation (X), and write the number of moles of reactants.
Here, number of moles of reactant octane, oxygen and nitrogen is
Refer Equation (X), and write the number of moles of products.
Here, number of moles of product carbon dioxide, water, oxygen and nitrogen is
Substitute the value from table (I) of substance in Equation (II).
Therefore the heat transfer for
Substitute 8 for
Substitute
Substitute
Thus, the rate of heat transfer from the combustion chamber is
(b)

The rate of power output of the turbine.
Answer to Problem 114RP
The rate of power output of the turbine is
Explanation of Solution
Determine the power output of the adiabatic turbine from the steady-flow energy balance equation for non-reacting gas mixture.
Determine the rate of work done of the adiabatic turbine.
Conclusion:
Substitute the value from table (I) of substance in Equation (XI).
Substitute
Thus, the rate of power output of the turbine is
(c)

The exergy destruction rate from the combustion chamber.
The rate of reversible work done in the combustion chamber.
Answer to Problem 114RP
The exergy destruction rate from the combustion chamber is
The rate of reversible work done in the combustion chamber is
Explanation of Solution
Write the expression for entropy generation during this process.
Write the combustion equation of Equation (VI)
Here, the entropy of the product is
Determine the entropy at the partial pressure of the components.
Here, the partial pressure is
Determine the entropy generation rate from the combustion chamber.
Write the expression for exergy destruction during this process.
Here, the thermodynamic temperature of the surrounding is
Determine the rate of the reversible work done of the combustion chamber.
Conclusion:
Refer Equation (XV) for reactant and product to calculation the entropy in tabular form as:
For reactant entropy,
Substance |
(T, 1 atm) | ||||
1 | 1.00 | 360.79 | 17.288 | 360.79 | |
37.5 | 0.21 | 220.589 | 4.313 | 8,110.34 | |
141 | 0.79 | 206.630 | 15.329 | 26,973.44 | |
For product entropy,
Substance |
(T, 1 atm) | ||||
8 | 0.0437 | 266.444 | -20.260 | 2,293.63 | |
9 | 0.0490 | 230.499 | -19.281 | 2,248.02 | |
25 | 0.1366 | 241.689 | -10.787 | 6,311.90 | |
141 | 0.7705 | 226.389 | 3.595 | 31,413.93 | |
Substitute
Substitute
Substitute
Thus, the exergy destruction rate from the combustion chamber is
Substitute
Thus, the rate of reversible work done in the combustion chamber is
Want to see more full solutions like this?
Chapter 15 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
- Problem 2 (55 pts). We now consider the FEM solution of Problem 1.(a) [5pts] Briefly describe the 4 steps necessary to obtain the approximate solution of thatBVP using the Galerkin FEM. Use the minimum amount of math necessary to supportyour explanations.(b) [20pts] Derive the weak form of the BVP.(c) [10pts] Assuming a mesh of two equal elements and linear shape functions, sketch byhand how you expect the FEM solution to look like. Also sketch the analytical solutionfor comparison. In your sketch, identify the nodal degrees of freedom that the FEMsolution seeks to find.(d) [10pts] By analogy with the elastic rod problem and heat conduction problem considered in class, write down the stiffness matrix and force vector for each of the twoelements considered in (c).(e) [10pts] Assemble the global system of equations, and verbally explain how to solve it.arrow_forwardAn aluminum rod of length L = 1m has mass density ρ = 2700 kgm3 andYoung’s modulus E = 70GPa. The rod is fixed at both ends. The exactnatural eigenfrequencies of the rod are ωexactn =πnLqEρfor n=1,2,3,. . . .1. What is the minimum number of linear elements necessary todetermine the fundamental frequency ω1 of the system? Discretizethe rod in that many elements of equal length, assemble the globalsystem of equations KU = ω2MU, and find the fundamentalfrequency ω1. Compute the relative error e1 = (ω1 − ωexact1)/ωexact1.Sketch the fundamental mode of vibration.arrow_forwardProblem 1 (65 pts, suggested time 50 mins). An elastic string of constant line tension1T is pinned at x = 0 and x = L. A constant distributed vertical force per unit length p(with units N/m) is applied to the string. Under this force, the string deflects by an amountv(x) from its undeformed (horizontal) state, as shown in the figure below.The PDE describing mechanical equilibrium for the string isddx Tdvdx− p = 0 . (1)(a) [5pts] Identify the BCs for the string and identify their type (essential/natural). Writedown the strong-form BVP for the string, including PDE and BCs.(b) [10pts] Find the analytical solution of the BVP in (a). Compute the exact deflectionof the midpoint v(L/2).(c) [15pts] Derive the weak-form BVP.(d) [5pts] What is the minimum number of linear elements necessary to compute the deflection of the midpoint?(e) [15pts] Write down the element stiffness matrix and the element force vector for eachelement.arrow_forward
- Problem 1 (35 pts). An elastic string of constant line tension1 T is pinned at x = 0 andx = L. A constant distributed vertical force per unit length p (with units N/m) is appliedto the string. Under this force, the string deflects by an amount v(x) from its undeformed(horizontal) state, as shown in the figure below.Force equilibrium in the string requires thatdfdx − p = 0 , (1)where f(x) is the internal vertical force in the string, which is given byf = Tdvdx . (2)(a) [10pts] Write down the BVP (strong form) that the string deflection v(x) must satisfy.(b) [2pts] What order is the governing PDE in the BVP of (a)?(c) [3pts] Identify the type (essential/natural) of each boundary condition in (a).(d) [20pts] Find the analytical solution of the BVP in (a).arrow_forwardProblem 2 (25 pts, (suggested time 15 mins). An elastic string of line tension T andmass per unit length µ is pinned at x = 0 and x = L. The string is free to vibrate, and itsfirst vibration mode is shown below.In order to find the frequency of the first mode (or fundamental frequency), the string isdiscretized into a certain number of linear elements. The stiffness and mass matrices of thei-th element are, respectivelyESMi =TLi1 −1−1 1 EMMi =Liµ62 11 2 . (2)(a) [5pts] What is the minimum number of linear elements necessary to compute the fundamental frequency of the vibrating string?(b) [20pts] Assemble the global eigenvalue problem and find the fundamental frequency ofvibration of the stringarrow_forwardI need part all parts please in detail (including f)arrow_forward
- Problem 3 (10 pts, suggested time 5 mins). In class we considered the mutiphysics problem of thermal stresses in a rod. When using linear shape functions, we found that the stress in the rod is affected by unphysical oscillations like in the following plot E*(ux-a*T) 35000 30000 25000 20000 15000 10000 5000 -5000 -10000 0 Line Graph: E*(ux-a*T) MULT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Arc length (a) [10pts] What is the origin of this issue and how can we fix it?arrow_forwardanswer the questions and explain all of it in words. Ignore where it says screencast and in class explanationarrow_forwardB5 Please help on the attached question.arrow_forward
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
