
A steam boiler heats liquid water at 200°C to superheated steam at 4 MPa and 400°C. Methane fuel (CH4) is burned at atmospheric pressure with 50 percent excess air. The fuel and air enter the boiler at 25°C and the products of combustion leave at 227°C. Calculate (a) the amount of steam generated per unit of fuel mass burned, (b) the change in the exergy of the combustion streams, in kJ/kg fuel, (c) the change in the exergy of the steam stream, in kJ/kg steam, and (d) the lost work potential, in kJ/kg fuel. Take T0 = 25°C.
(a)

The amount of steam generated per unit of fuel mass burned.
Answer to Problem 112RP
The amount of steam generated per unit of fuel mass burned is
Explanation of Solution
Write the energy balance equation using steady-flow equation.
Here, the total energy entering the system is
Substitute
Here, the enthalpy of formation for product is
Calculate the molar mass of the
Here, the number of carbon atoms is
Determine the amount of steam generated per unit mass of fuel burned from an energy balance.
Here, the mass of the steam is
Conclusion:
Perform unit conversion of temperature at state 1 from degree Celsius to Kelvin.
For air temperature enter in the machine,
For air temperature exit from the machine,
Write the combustion equation of 1 kmol for
Here, liquid methane is
Refer Appendix Table A-18, A-19, A-20, and A-23, obtain the enthalpy of formation, at 298 K , and 500 K for
Substance | |||
-74,850 | --- | --- | |
0 | 8682 | 14,770 | |
0 | 8669 | 14,581 | |
-241820 | 9904 | 16,828 | |
-393,520 | 9364 | 17,678 |
Refer Equation (V), and write the number of moles of reactants.
Here, number of moles of reactant methane, oxygen and nitrogen is
Refer Equation (V), and write the number of moles of products.
Here, number of moles of product carbon dioxide, water, oxygen and nitrogen is
Substitute the value of substance in Equation (II).
Therefore the heat transfer for
Substitute 1 for
Calculate the heat loss per unit mass of the fuel.
From the table A-4, “Saturated water-Temperature” obtain the value of the saturated enthalpy and entropy of liquid at the
From the table A-6, “Superheated water” obtain the value of the enthalpy and entropy at the
Substitute
Thus, the amount of steam generated per unit of fuel mass burned is
(b)

The change in the exergy of the combustion steams, in
Answer to Problem 112RP
The change in the exergy of the combustion steams, in
Explanation of Solution
Write the expression for entropy generation during this process.
Write the combustion equation of Equation (VI)
Here, the entropy of the product is
Determine the entropy at the partial pressure of the components.
Here, the partial pressure is
Write the expression for exergy change of the combustion steam is equal to the exergy destruction.
Here, the thermodynamic temperature of the surrounding is
Conclusion:
Refer Equation (VIII) for reactant and product to calculation the entropy in tabular form as:
For reactant entropy,
Substance |
(T, 1 atm) | ||||
1 | --- | 186.16 | --- | 186.16 | |
3 | 0.21 | 205.04 | -12.98 | 654.06 | |
11.28 | 0.79 | 191.61 | -1.960 | 2183.47 | |
For product entropy,
Substance |
(T, 1 atm) | ||||
1 | 0.0654 | 234.814 | -22.67 | 257.48 | |
2 | 0.1309 | 206.413 | -16.91 | 446.65 | |
1 | 0.0654 | 220.589 | -22.67 | 243.26 | |
11.28 | 0.7382 | 206.630 | -2.524 | 2359.26 | |
Substitute
Substitute
Calculate the exergy destruction per unit mass of the basis.
Thus, the change in the exergy of the combustion steams, in
(c)

The exergy change of the steam, in
Answer to Problem 112RP
The exergy change of the steam, in
Explanation of Solution
Determine the exergy change of the steam stream.
Here, the final enthalpy is
Conclusion:
Substitute
Thus, the exergy change of the steam, in
(d)

The lost work potential, in
Answer to Problem 112RP
The lost work potential, in
Explanation of Solution
Determine the lost work potential is the negative of the net exergy change both streams.
Conclusion:
Substitute
Thus, the lost work potential, in
Want to see more full solutions like this?
Chapter 15 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
- A tensile specimen made of hot-rolled AISI 1020 steel is loaded to point corresponding to a strain of 43%. 60 Su = 66 ksi Stress σ (ksi) 20 Sy = 39 ksi Se = 36 ksi Hot-rolled 1020 steel F 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 Strain € (%) 0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Area ratio R 0.1 0.2 0.3 0.4 0.5 Area reduction A, What value of area reduction is applicable to this location? 0.6arrow_forwardTable of Measurements and Results: Reading m/s Ji- a (wh Nu h Re Nu Error% (C) (°C) 2 1 Discussion: 1-Estimate the heat transfer and experimental value of the heat transfer coefficient hex with its unit and Nusselt number Nu expl 2- Find the percentage error for the value of the experimental Nusselt number. 3-Draw the graph showing a relationship between the temperatures difference (T-T) and theoretical and experimental value of Nusselt number. 4-The forced convection heat transfer coefficient of a plate depends on which of the following: a-gravity. b-velocity of fluid. e-conductivity of fluid. d-conductivity of plate material. Experiment: Internal Forced convenction Heat trovate on now through t objectives. Study the convection heat transfer of air flow through stage Calculations. Q & (T-T) Vary Re Q. heup A (TT) (T. Te-T ASPL Nep Re 117 RITT 14 ' 14arrow_forwardIf AE = 1.6 m, ED = CD = 1.9 m and F = 3.1 kN, then find the magnitude of the force acting in EB. B 30° 30° C E D ED m DC m ♥F KNarrow_forward
- Assume multiple single degree of freedom systems with natural periods T ∈ [0.05, 2.00] seconds with in- crement of period dT = 0.05 seconds. Assume three cases of damping ratio: Case (A) ξ = 0%; Case (B) ξ = 2%; Case (C) ξ = 5%. The systems are initially at rest. Thus, the initial conditions are u(t = 0) = 0 and ̇u(t = 0) = 0. The systems are subjected to the base acceleration that was provided in the ElCentro.txt file (i.e., first column). For the systems in Case (A), Case (B), and Case (C) and for each natural period compute the peak acceleration, peak velocity, and peak displacement responses to the given base excitation. Please, use the Newmark method for β = 1/4 (average acceleration) to compute the responses. Create three plots with three lines in each plot. The first plot will have the peak accelerations in y-axis and the natural period of the system in x-axis. The second plot will have the peak velocities in y-axis and the natural period of the system in x-axis. The third plot…arrow_forwardDetermine the resultant stress at points P and Q.arrow_forwardFor the notched specimen with h = 0.13 m and r =11 mm, calculate the nominal stress for F=5 kN. F h F 25 mm Please submit your answer in the units of MPa.arrow_forward
- A tensile specimen made of hot-rolled AISI 1020 steel is loaded to point corresponding to a strain of 49%. 60 Su = 66 ksi Stress σ (ksi) Sy = 39 ksi 400B Se = 36 ksi Hot-rolled 1020 steel 20 F 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 Strain € (%) 0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Area ratio R 0.1 0.2 0.3 0.4 0.5 Area reduction A, What value of Su is applicable to this location? 0.6arrow_forwardA tensile specimen made of hot-rolled AISI 1020 steel is loaded to point corresponding to a strain of 40%. 60 Su = 66 ksi Stress σ (ksi) 40 20 Sy= = 39 ksi Se = 36 ksi Hot-rolled 1020 steel F | G | H 0 10 20 30 40 50 60 0 70 80 90 100 110 120 130 140 150 160 Strain € (%) ☐ T 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Area ratio R 0.1 0.2 0.3 0.4 0.5 Area reduction A, What value of Sy is applicable to this location? 0.6arrow_forwardA vertical .2m by .2m square plate is exposed to saturated water vapor at atmospheric pressure. If the surface temperature is 80 degrees C and the flow is laminar, estimate the loal heat transfer coefficents at the middles and at the bottom of the plate.arrow_forward
- A transformer that is 10 cm long, 6.2 cm wide, and 5 cm high is to be cooled by attaching a 10 cm by 6.2 cm wide polished aluminum heat sink(emissivity=.03) to its top surface. The heat sink has seven fins, which are 5 mm high, 2mm thick, and 10 cm long. A fan blows air at 25 degrees C parallel to the passages between the fins. The heat sink is to dissipate 12W of heat, and the base temp of the ehat sink is not to exceed 60 degrees C. Assuming the fins and the base plate to be nearly isothermal and the radiation heat transfer to be negligible, determine the minimum free-stream velocity the fan needs to supply to avoid overheating. Assume the flow is laminar over the entire finned surface of the transformer.arrow_forwardI need a mechanical engineering expert to solve this question,no Ai pleasearrow_forwardCan you give me the meaning of Combination spanner and Give Examples of Spannersarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





