Tutorials in Introductory Physics
1st Edition
ISBN: 9780130970695
Author: Peter S. Shaffer, Lillian C. McDermott
Publisher: Addison Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15.5, Problem 4dTH
A bicycle coasts up a hill while a car drives up the hill at constant speed. The strobe diagram shows their positions at instants 1−4, separated by equal time intervals. The bicycle comes to rest relative to the road at instant 4.
-
d. In the frame of the car, is the bicycle
speeding up, slowing down, or
moving with constant speed:
- At instant 2?
- At instant 3?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
SITUATION 4. The rectilinear motion of a particle is governed by a =
meters. Given that at time t = 1sec, x = 2m and v = 2m/s.
a. Write the equarion of motion
b. Determine the position, velocity and acceleration at t = 4sec.
-16
, where a is in m/s² and x is in
x3,
Hello,
Can someone please show how to solve problem 1?
Thank you!
Velocity +
C
Time, s
(1)
4
Velocity +
Velocity +
Time, s
(4)
Time, s
Velocity +
Velocity +
Time, s
(5)
Five particles undergo motion as shown in the velocity versus time graphs. In which graph of
velocity versus time does a particle end up furthest from the origin (starting point)?
Time, s
(3)
Chapter 15 Solutions
Tutorials in Introductory Physics
Ch. 15.1 - Describe the motion. During which periods of time,...Ch. 15.1 - Find the object’s instantaneous velocity at each...Ch. 15.1 - For each of the following intervals, find the...Ch. 15.1 - In which of the cased from part c, if any, is the...Ch. 15.1 - In the interval from t=0s to t=6s , does the...Ch. 15.1 - In the small box on the graph above is a portion...Ch. 15.1 - Next, we expand the section of the previous graph...Ch. 15.1 - All three graphs are representations of the same...Ch. 15.1 - Suppose that the object is speeding up. Which of...Ch. 15.1 - Suppose that the object is slowing down. Which of...
Ch. 15.1 - Describe how you could use these devices to...Ch. 15.1 - Describe how you could use these devices to...Ch. 15.2 - In each of the following exercises, a motion will...Ch. 15.2 - In each of the following exercises, a motion will...Ch. 15.2 - In each of the following exercises, a motion will...Ch. 15.2 - In each of the following exercises, a motion will...Ch. 15.2 - In each of the following exercises, a motion will...Ch. 15.2 - In each of the following exercises, a motion will...Ch. 15.2 - In each of the following exercises, a motion will...Ch. 15.2 - In each of the following exercises, a motion will...Ch. 15.2 - There are several answers for most of the...Ch. 15.2 - There are several answers for most of the...Ch. 15.2 - There are several answers for most of the...Ch. 15.3 - A ball rolls up, then down an incline. Sketch an...Ch. 15.3 - Sketch x versus t, v versus t, and a versus t...Ch. 15.3 - Sketch x versus t, v versus t, and a versus t...Ch. 15.3 - Sketch x versus t, v versus t, and a versus t...Ch. 15.3 - Describe the motion of an object: For which the...Ch. 15.3 - Describe the motion of an object: b. For which the...Ch. 15.3 - Describe the motion of an object: c. For which the...Ch. 15.3 - Describe the motion of an object: d. For which the...Ch. 15.3 - Two carts roll toward each other on a level table....Ch. 15.3 - Two carts roll toward each other on a level table....Ch. 15.3 - Two carts roll toward each other on a level table....Ch. 15.3 - In this problem, a Cart moves in various ways on a...Ch. 15.3 - In this problem, a Cart moves in various ways on a...Ch. 15.3 - In this problem, a Cart moves in various ways on a...Ch. 15.3 - Carts A and B move along a horizontal track. The...Ch. 15.3 - Carts A and B move along a horizontal track. The...Ch. 15.3 - Carts A and B move along a horizontal track. The...Ch. 15.3 - Carts A and B move along a horizontal track. The...Ch. 15.3 - Two cars, C and D, travel in the same direction on...Ch. 15.3 - Two cars, P and Q, travel in the same direction on...Ch. 15.3 - Two cars, P and Q, travel in the same direction on...Ch. 15.4 - Prob. 1aTHCh. 15.4 - Prob. 1bTHCh. 15.4 - Describe how you would determine the acceleration...Ch. 15.4 - Copy vG and vH (placed “tailtotail”) in the space...Ch. 15.4 - Generalize your results above and from tutorial to...Ch. 15.4 - For each instant, state whether the object is...Ch. 15.4 - The diagram at right illustrates how the...Ch. 15.4 - For each of the instants 14, compare your...Ch. 15.4 - Choose a point about 1/8th of the way around the...Ch. 15.4 - Prob. 3bTHCh. 15.4 - How would you characterize the direction of v as...Ch. 15.4 - Each of the following statements in incorrect....Ch. 15.4 - On the diagram at right, draw vectors that...Ch. 15.4 - On the diagram at right, draw vectors that...Ch. 15.4 - Draw arrows on the diagram at points AG to...Ch. 15.4 - Next to each of the labeled points, state whether...Ch. 15.4 - Draw arrows on the diagram below to show the...Ch. 15.4 - On the diagram at right, draw velocity vectors for...Ch. 15.4 - On the diagram at right, draw the acceleration...Ch. 15.4 - How does the magnitude of the acceleration at E...Ch. 15.5 - Reference frame of boat B: Complete the upper...Ch. 15.5 - Reference frame of boat A: Complete the diagram at...Ch. 15.5 - Is the speed of the kayak in the frame of boat A...Ch. 15.5 - Rank the following quantities in order of...Ch. 15.5 - A third riverboat, boat C, moves downstream so as...Ch. 15.5 - Prob. 2aTHCh. 15.5 - A car, a truck, and a traffic cone are on a...Ch. 15.5 - The relationship vcar,cone=vcar,truck+vtruck,cone...Ch. 15.5 - Car P moves to the west with constant speed v0...Ch. 15.5 - Car P moves to the west with constant speed v0...Ch. 15.5 - Car P moves to the west with constant speed v0...Ch. 15.5 - Car P moves to the west with constant speed v0...Ch. 15.5 - Car P moves to the west with constant speed v0...Ch. 15.5 - A bicycle coasts up a hill while a car drives up...Ch. 15.5 - A bicycle coasts up a hill while a car drives up...Ch. 15.5 - A bicycle coasts up a hill while a car drives up...Ch. 15.5 - A bicycle coasts up a hill while a car drives up...Ch. 15.5 - A bicycle coasts up a hill while a car drives up...Ch. 15.5 - A bicycle coasts up a hill while a car drives up...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Your bore cells, muscle cells, and skin cells look different because a. different kinds of genes are present in...
Campbell Essential Biology (7th Edition)
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
DRAW IT Pea plants heterozygous for flower position and stem length (AaTt) are allowed to self-pollinate, and ...
Campbell Biology (11th Edition)
Choose the best answer to each of the following. Explain your reasoning. Based on computer models, when is plan...
Cosmic Perspective Fundamentals
How can 1H NMR distinguish between the compounds in each of the following pairs?
Organic Chemistry (8th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A bunch of keys was thrown directly upward by Macoy, who is looking out of the window, to be caught by Len-Len living on a room right above him. Unfortunately, Len-Len wasn't able to catch the keys and therefore the bunch of keys went straight to the ground. If Macoy gave the keys an upward speed of 3 m/s and the keys reached the ground after Macoy threw the keys upward in 4 seconds, c. What is the keys' acceleration when it reached its highest point?d. What is the keys' velocity when it reached its highest point?arrow_forwardA billiard ball is rolling across a pool table toward the front of a train at 2.1m/s while the train is moving forward at 6.2m/s. a.) How fast is the ball moving relative to the ground? b.) Later, the ball is rolling toward the back of the train at the same speed. What is the ball's velocity relative to the ground now? (Train moving in the positive direction).arrow_forwardTwo cars move with constant velocities. At t = 0, a blue car is at xBo= 20 m. After t = 4 s in the blue car time frame of reference, a red car located then at xRo= 0 m , within 3 seconds catches up with the blue car at xB = xR = 60 m. Find the velocities of blue and red cars.arrow_forward
- After t seconds, a moving particle has position (in meters) s(t) = t* – 4t3 – 20t² + 20, t > 0 a. What is the velocity of the particle at time t? b. When is the particle moving forward? When is it moving backward? How can you tell? c. When is the particle at rest? How can you tell?arrow_forwardAn experimentalist in a laboratory finds that a particle has a helical path. The position of this particle in the laboratory frame is given by r(t)=Rcost+Rsint+vztk where R, vz, and are constants. A moving frame has velocity (vM)L=vzk relative to the laboratory frame. a. What is the path of the particle in the moving frame? b. What is the velocity of the particle as a function of time relative to the moving frame? c. What is the acceleration of the particle in each frame? d. How should the acceleration in each frame be related? Does your answer to part (c) make sense? Explain.arrow_forwardAn observer sitting on a park bench watches a person walking behind a runner. Figure P4.72A is the motion diagram representing what this observer sees. To better reveal the changing distance between runner and walker, five observations (A through E) are shown on five separate lines in Figure P4.72B. To the observer on the bench, both the runner and the walker move to the right, and the gap between them widens. Draw the motion diagram of the runner from the reference frame of the walker. FIGURE P4.72arrow_forward
- Mr. M's truck at a velocity of 14m/s [E]. At an exact instant, he sees his friend, Mr. T 35m away from him ([E] direction). At that instant when Mr. M measures Mr. T to be 35m away, Mr. M throws a ball straight up with the intent to hit Mr. T's head. What initial speed should he throw a ball (assuming he throws it straight up) to hit Mr. T? (assume Mr. T's head is level with where Mr. M releases the snowball)arrow_forwardProblem 2: Skating on ice (adapted from MasteringPhysics) A speed skater moving across fric- tionless ice at 8 m/s hits a 5m wide patch of rough ice. She slows steadily, then continues on at 6 m/s. wolog bs a) What is her acceleration on the rough ice? In the space below write your answer, please show all the steps of your work, not just the final answer.arrow_forwardFree Fall. Allan is on the ground YA,0 = 0 [m], and Bob is directly above him at YB,0 = 172.[m]. Bob drops a cannonball at the same time Allan shoots a similar cannonball directly upward. Allan’s cannonball was launched with enough speed so that both cannonballs will collide just as Allan’s cannonball reached its maximum height. What is the initial speed of Allan's cannonball ?arrow_forward
- You are sitting in your car at a red light when you see a zombie standing still 65m in front of your car. You both begin to accelerate towards each other. Your car accelerates at 1.8 m/s^2 and the zombie accelerates at 0.6 m/s^2. How long does it take for you to strike the zombie? Make sure to include a diagram of the physical situation, label known and unknown quantities with units, and coordinate system. Thanks!arrow_forwardI need step by step help please.arrow_forwardYou have exactly 5 minutes 50 seconds to get to your next class on time and that classroom is 464 m east of where you are right now. First you run to your dorm room at an average velocity of 5.59 m/s to the south to pick up your calculator and your dorm room is 389 m south of where you were initially. What average velocity (magnitude only) do you now need to run from your dorm room to your classroom to arrive exactly on time? 5.59 m/s 2.16 m/s 2.44 m/s 1.73 m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Time Dilation - Einstein's Theory Of Relativity Explained!; Author: Science ABC;https://www.youtube.com/watch?v=yuD34tEpRFw;License: Standard YouTube License, CC-BY