Tutorials in Introductory Physics
1st Edition
ISBN: 9780130970695
Author: Peter S. Shaffer, Lillian C. McDermott
Publisher: Addison Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15.3, Problem 4bTH
Two carts roll toward each other on a level table. The vectors represent the velocities of the carts just before and just after they collide.
b. How does the direction of the average acceleration of cart A compare to the direction of the average acceleration of cart B over the time interval shown? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I'm only asking for help on parts a-c.
If the stone had been thrown from the clifftop with the same initial speed and the same angle, but above the horizontal, then compare their impact velocities.
a)The impact velocity when throwing a stone above horizontal will be more than the case when throwing a stone below horizontal.
b The impact velocities of the two situations will be the same.
c More information is needed to conclude the relative strength of impact velocities.
d).The impact velocity when throwing a stone above horizontal will be less than the case when throwing a stone below horizontal.
which option is correct
You fire a ball with an initial speed V0 at an angle (ϕ) above the surface of an incline, which is itself inclined at an angle (θ) above the horizontal (Figure below).
a. Find the distance, measured along the incline, from the launch point to the point when the ball strikes the incline.
b. What angle ϕ gives the maximum range, measured along the incline? Ignore air resistance.
c. Since there's no air resistance, this is a problem in projectile motion. The goal is to find the point where the ball's parabolic trajectory intersects the incline. It is best to choose the x-axis to be horizontal and direct to the right, the y-axis to be vertical and direct to the up, and the origin to be at the point where the ball is fired. In the projectile equations, the launch angle α0 is measured from the horizontal. What is this angle in terms of (θ) and (ϕ)?
Chapter 15 Solutions
Tutorials in Introductory Physics
Ch. 15.1 - Describe the motion. During which periods of time,...Ch. 15.1 - Find the object’s instantaneous velocity at each...Ch. 15.1 - For each of the following intervals, find the...Ch. 15.1 - In which of the cased from part c, if any, is the...Ch. 15.1 - In the interval from t=0s to t=6s , does the...Ch. 15.1 - In the small box on the graph above is a portion...Ch. 15.1 - Next, we expand the section of the previous graph...Ch. 15.1 - All three graphs are representations of the same...Ch. 15.1 - Suppose that the object is speeding up. Which of...Ch. 15.1 - Suppose that the object is slowing down. Which of...
Ch. 15.1 - Describe how you could use these devices to...Ch. 15.1 - Describe how you could use these devices to...Ch. 15.2 - In each of the following exercises, a motion will...Ch. 15.2 - In each of the following exercises, a motion will...Ch. 15.2 - In each of the following exercises, a motion will...Ch. 15.2 - In each of the following exercises, a motion will...Ch. 15.2 - In each of the following exercises, a motion will...Ch. 15.2 - In each of the following exercises, a motion will...Ch. 15.2 - In each of the following exercises, a motion will...Ch. 15.2 - In each of the following exercises, a motion will...Ch. 15.2 - There are several answers for most of the...Ch. 15.2 - There are several answers for most of the...Ch. 15.2 - There are several answers for most of the...Ch. 15.3 - A ball rolls up, then down an incline. Sketch an...Ch. 15.3 - Sketch x versus t, v versus t, and a versus t...Ch. 15.3 - Sketch x versus t, v versus t, and a versus t...Ch. 15.3 - Sketch x versus t, v versus t, and a versus t...Ch. 15.3 - Describe the motion of an object: For which the...Ch. 15.3 - Describe the motion of an object: b. For which the...Ch. 15.3 - Describe the motion of an object: c. For which the...Ch. 15.3 - Describe the motion of an object: d. For which the...Ch. 15.3 - Two carts roll toward each other on a level table....Ch. 15.3 - Two carts roll toward each other on a level table....Ch. 15.3 - Two carts roll toward each other on a level table....Ch. 15.3 - In this problem, a Cart moves in various ways on a...Ch. 15.3 - In this problem, a Cart moves in various ways on a...Ch. 15.3 - In this problem, a Cart moves in various ways on a...Ch. 15.3 - Carts A and B move along a horizontal track. The...Ch. 15.3 - Carts A and B move along a horizontal track. The...Ch. 15.3 - Carts A and B move along a horizontal track. The...Ch. 15.3 - Carts A and B move along a horizontal track. The...Ch. 15.3 - Two cars, C and D, travel in the same direction on...Ch. 15.3 - Two cars, P and Q, travel in the same direction on...Ch. 15.3 - Two cars, P and Q, travel in the same direction on...Ch. 15.4 - Prob. 1aTHCh. 15.4 - Prob. 1bTHCh. 15.4 - Describe how you would determine the acceleration...Ch. 15.4 - Copy vG and vH (placed “tailtotail”) in the space...Ch. 15.4 - Generalize your results above and from tutorial to...Ch. 15.4 - For each instant, state whether the object is...Ch. 15.4 - The diagram at right illustrates how the...Ch. 15.4 - For each of the instants 14, compare your...Ch. 15.4 - Choose a point about 1/8th of the way around the...Ch. 15.4 - Prob. 3bTHCh. 15.4 - How would you characterize the direction of v as...Ch. 15.4 - Each of the following statements in incorrect....Ch. 15.4 - On the diagram at right, draw vectors that...Ch. 15.4 - On the diagram at right, draw vectors that...Ch. 15.4 - Draw arrows on the diagram at points AG to...Ch. 15.4 - Next to each of the labeled points, state whether...Ch. 15.4 - Draw arrows on the diagram below to show the...Ch. 15.4 - On the diagram at right, draw velocity vectors for...Ch. 15.4 - On the diagram at right, draw the acceleration...Ch. 15.4 - How does the magnitude of the acceleration at E...Ch. 15.5 - Reference frame of boat B: Complete the upper...Ch. 15.5 - Reference frame of boat A: Complete the diagram at...Ch. 15.5 - Is the speed of the kayak in the frame of boat A...Ch. 15.5 - Rank the following quantities in order of...Ch. 15.5 - A third riverboat, boat C, moves downstream so as...Ch. 15.5 - Prob. 2aTHCh. 15.5 - A car, a truck, and a traffic cone are on a...Ch. 15.5 - The relationship vcar,cone=vcar,truck+vtruck,cone...Ch. 15.5 - Car P moves to the west with constant speed v0...Ch. 15.5 - Car P moves to the west with constant speed v0...Ch. 15.5 - Car P moves to the west with constant speed v0...Ch. 15.5 - Car P moves to the west with constant speed v0...Ch. 15.5 - Car P moves to the west with constant speed v0...Ch. 15.5 - A bicycle coasts up a hill while a car drives up...Ch. 15.5 - A bicycle coasts up a hill while a car drives up...Ch. 15.5 - A bicycle coasts up a hill while a car drives up...Ch. 15.5 - A bicycle coasts up a hill while a car drives up...Ch. 15.5 - A bicycle coasts up a hill while a car drives up...Ch. 15.5 - A bicycle coasts up a hill while a car drives up...
Additional Science Textbook Solutions
Find more solutions based on key concepts
71. MCAT-Style Passage Problems
Lightbulb Failure
You’ve probably observed that the most common time for an inc...
College Physics: A Strategic Approach (3rd Edition)
How can the freezing of water crack boulders?
Campbell Biology in Focus (2nd Edition)
A KNO3 solution containing 45 g of KNO3 per 100 g of water is cooled from 40Cto0C. What happens during cooling?...
Introductory Chemistry (6th Edition)
28. As the earth mates, what is the speed of (a) a physics student in Miami. Florida. at latitude 26°, and (b) ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Which culture uses NAD+? Use the following choices to answer questions. a. E. coli growing in glucose broth at ...
Microbiology: An Introduction
1. Which parts of the skeleton belong to the appendicular skeleton? Which belong to the axial skeleton?
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A rocket is launched at an angle of 53° above the horizontal with an initial speed of 75 m/s, as shown below. It moves for 25 s along its initial line of motion with an acceleration of 25 m/s². At this time, its engines fail, and the rocket proceeds to move as a free body. a. What is the rocket's maximum altitude? b. What is the rocket's total time of flight? c. What is the rocket's horizontal range?arrow_forwardA stone is thrown vertically upward with a speed of 17.6 m/sm/s from the edge of a cliff 75.0 mm high. A.)How much later does it reach the bottom of the cliff? Express your answer to three significant figures and include the appropriate units. B.)What is its speed just before hitting? Express your answer to three significant figures and include the appropriate units. C.)What total distance did it travel? Express your answer to three significant figures and include the appropriate units.arrow_forwarda.) Draw the distance vs. time graph. Find the slope. b.) Describe the graph line. What does it imply? a.) Draw the speed vs. time graph. Find the slope. Describe the graph line. What does it imply? b.) Find the slope of the graph and compare it with the calculated acceleration. Describe the motion of a freely falling body based on the results obtained. If, by some suitable mechanism, the falling body had been given an initial downward push instead of being just released, would the resulting value of `g’ have been different? Explain. Problems: An object is dropped from rest at a height of 300 m.a. Find the velocity after 2 seconds.b. Find the time it takes for the object to reach the ground. c. With what velocity does it hit the ground? A car starting from rest is accelerated 15 m/s2. In how many seconds will its velocity be equal to 100 m/s? How far will it have traveled during this same time?arrow_forward
- IPA hot-air balloon rises from the ground with a velocity of (3.00 m's )f. Achampagne bottle is opened to celebrate takeoff, expelling the cork horizontally with a velocity of (5.00 m/s )t relative to the balloon. When opened, the bottle is 7.00 m above the ground. Part A What is the initial velocity of the cork, as seen by an observer on the ground? Enter your answers numerically separated by a comma. Submit Requeet Anawer Part B What is the speed of the cork, as seen by the same observer? m/s Submit Requeet Anawer Part C What is its initial direction of motion, as seen by the same observer? 8= *above horizontal Submit Requeet Anawer Part D Determine the maximum height above the ground attained by the cork. Yma = m Submit Requeet Anawer Part E How long does the cork remain in the air? Submit Requeet Anawerarrow_forwardProblem Statement: You decide you are done with physics class and you run away to join a traveling circus. The circus is putting on a new act which involves launching someone out of a cannon, “the human cannonball," however, the cannon is mounted atop a moving train. The human cannonball will be launched in front of the train from atop the train. Just before landing in harms way, a trapeze artist will swoop the cannonball up before they are hit by the train. The ring mistress of the circus learns that you studied physics and decides she wants you to do some calculations for the safety of the human cannonball. You can't seem to escape your physics class even in the circus. Suppose the human cannonball is launched with speed vo and launch angle 0. At the moment they launch, the train which had been moving with speed Vtrain, begins to accelerate with acceleration a. NOTE: This problem involves understanding relative motion between the ground's stationary reference frame and the train's…arrow_forwardRemember to express the answer in SI and round the final answer to the nearest hundredths A lady tosses a coin vertically up with a speed of 5.5 m/s. a. How high will the coin rise before going down? b. With what speed will it land on the lady’s hand?arrow_forward
- Suppose a projectile is fired with initial speed v, and angle e above the horizontal. a) Understand and plan. Draw a picture, establish a coordinate system for this problem and label your diagram. Make a table of known/given information and unknown/wanted information (this may involve reading the rest of the problem before starting). b) Using Kinematics, derive a symbolic expression for the maximum height reached by the projectile. Check the physical units of your expression. c) Using Kinematics, derive a symbolic expression for the total time the projectile is in the air. Check the physical units of your expression. d) Using Kinematics, derive an expression for the magnitude and direction angle of the projectiles velocity a time t after the object is fired. Check the physical units of your expression. e) Suppose that the projectile is fired with an initial speed of v, = 46.6 m/s and 0 = 42.2°, what is the magnitude and direction angle of the projectile's velocity t = 1.50 s after…arrow_forwardIPA hot-air balloon rises from the ground with a velocity of (3.00 m/s )ỹ. Achampagne bottle is opened to celebrate takeoff, expelling the cork horizontally with a velocity of (5.00 m/s )î relative to the balloon. When opened, the bottle is 7.00 m above the ground. Part A What is the initial velocity of the cork, as seen by an observer on the ground? Enter your answers numerically separated by a comma. e kevboard shortcuts Help Temglates Symbols undo redo ". "y = 3.00.,5.00 m/s Submit Prevlous Anawere Requeet Anawer X Incorrect; Try Again; 4 attempts remaining Part B What is the speed of the cork, as seen by the same observer? Vo = 5.83 m/s Submit Previous Anawere v Correct Part C What is its initial direction of motion, as seen by the same observer? TemgratesSymor undo regio feset keyboard shortcuts help 8 = 59 * above horizontal Submit Prevlous Anawera Requeet Anawer X Incorrect; Try Again; 4 attempts remainingarrow_forwardI am stumped on this question may i have help figuring it out please?arrow_forward
- Please answer letter a,b, and c.arrow_forwardA kid throws a balloon at an angle of 69 degrees towards his friends who is 7 m away. a. How fast would the water ballon leave the kids hand so that it hits his friend at the same level it was thrown? Give answer in m/s.arrow_forwardIn the Soap Box Derby, kids build non-motorized cars with very low-friction wheels. They race by rolling down a hill. The track at Akron's Derby Downs begins with a 14-meter section tilted 15 degrees below the horizontal. A. Draw a useful pictorial representation for this problem. Clearly indicate the angle above, and a useful coordinate system. B. What is the acceleration of a car rolling down this hill (ignore friction)? C. If a car starts from rest at the top of the section so that will be its speed at the bottom of this section of the track?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY