
(a)
Interpretation: Assign oxidation numbers to all of the elements of the following:
H2S
Concept Introduction: The rules for assigning oxidation number to elements are:
- For an element in its free state it is assigned an oxidation number of zero.
- Monatomic ions have oxidation number that is equal to charge of the monatomic ion.
- Alkali metals have +1 oxidation number, alkaline earth metals have +2 oxidation number and halogens are assigned -1 oxidation number.
- In most compounds H is assigned a +1 oxidation number and O is assigned a -2 oxidation number.
- For a neutral compound the summation of oxidation numbers of all elements in the compound is zero.
If the oxidation number of an element increases then it undergoes oxidation and if the oxidation number of the element decreases then it undergoes reduction.
(b)
Interpretation: Assign oxidation numbers to all of the elements of the following:
NO2
Concept Introduction: The rules for assigning oxidation number to elements are:
- For an element in its free state it is assigned an oxidation number of zero.
- Monatomic ions have oxidation number that is equal to charge of the monatomic ion.
- Alkali metals have +1 oxidation number, alkaline earth metals have +2 oxidation number and halogens are assigned -1 oxidation number.
- In most compounds H is assigned a +1 oxidation number and O is assigned a -2 oxidation number.
- For a neutral compound the summation of oxidation numbers of all elements in the compound is zero.
If the oxidation number of an element increases then it undergoes oxidation and if the oxidation number of the element decreases then it undergoes reduction.
(c)
Interpretation: Assign oxidation numbers to all of the elements of the following:
CCl4
Concept Introduction: The rules for assigning oxidation number to elements are:
- For an element in its free state it is assigned an oxidation number of zero.
- Monatomic ions have oxidation number that is equal to charge of the monatomic ion.
- Alkali metals have +1 oxidation number, alkaline earth metals have +2 oxidation number and halogens are assigned -1 oxidation number.
- In most compounds H is assigned a +1 oxidation number and O is assigned a -2 oxidation number.
- For a neutral compound the summation of oxidation numbers of all elements in the compound is zero.
If the oxidation number of an element increases then it undergoes oxidation and if the oxidation number of the element decreases then it undergoes reduction.
(d)
Interpretation: Assign oxidation numbers to all of the elements of the following:
PCl3
Concept Introduction: The rules for assigning oxidation number to elements are:
- For an element in its free state it is assigned an oxidation number of zero.
- Monatomic ions have oxidation number that is equal to charge of the monatomic ion.
- Alkali metals have +1 oxidation number, alkaline earth metals have +2 oxidation number and halogens are assigned -1 oxidation number.
- In most compounds H is assigned a +1 oxidation number and O is assigned a -2 oxidation number.
- For a neutral compound the summation of oxidation numbers of all elements in the compound is zero.
If the oxidation number of an element increases then it undergoes oxidation and if the oxidation number of the element decreases then it undergoes reduction.

Want to see the full answer?
Check out a sample textbook solution
Chapter 15 Solutions
EP BASIC CHEMISTRY-STANDALONE ACCESS
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. :0: :0 H. 0:0 :0: :6: S: :0: Select to Edit Arrows ::0 Select to Edit Arrows H :0: H :CI: Rotation Select to Edit Arrows H. < :0: :0: :0: S:arrow_forward3:48 PM Fri Apr 4 K Problem 4 of 10 Submit Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Mg. :0: Select to Add Arrows :0: :Br: Mg :0: :0: Select to Add Arrows Mg. Br: :0: 0:0- Br -190 H 0:0 Select to Add Arrows Select to Add Arrows neutralizing workup H CH3arrow_forwardIarrow_forward
- Draw the Markovnikov product of the hydrobromination of this alkene. Note for advanced students: draw only one product, and don't worry about showing any stereochemistry. Drawing dash and wedge bonds has been disabled for this problem. + Explanation Check 1 X E 4 1 1 1 1 1 HBr Click and drag to start drawing a structure. 80 LE #3 @ 2 $4 0 I அ2 % 85 F * K M ? BH 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Center & 6 27 FG F10 8 9 R T Y U D F G H P J K L Z X C V B N M Q W A S H option command H command optiarrow_forwardBe sure to use wedge and dash bonds to show the stereochemistry of the products when it's important, for example to distinguish between two different major products. Predict the major products of the following reaction. Explanation Q F1 A Check F2 @ 2 # 3 + X 80 F3 W E S D $ 4 I O H. H₂ 2 R Pt % 05 LL ee F6 F5 T <6 G Click and drag to start drawing a structure. 27 & A 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Center Acce Y U H DII 8 9 F10 4 J K L Z X C V B N M T H option command F11 P H commandarrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s). Include all lone pairs and charges as appropriate. Ignore stereochemistry. Ignore inorganic byproducts. H :0: CH3 O: OH Q CH3OH2+ Draw Intermediate protonation CH3OH CH3OH nucleophilic addition H Draw Intermediate deprotonation :0: H3C CH3OH2* protonation H 0: H CH3 H.arrow_forward
- Predicting the reactants or products of hemiacetal and acetal formation uentify the missing organic reactants in the following reaction: H+ X+Y OH H+ за Note: This chemical equation only focuses on the important organic molecules in the reaction. Additional inorganic or small-molecule reactants or products (like H2O) are not shown. In the drawing area below, draw the skeletal ("line") structures of the missing organic reactants X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Explanation Check Click and drag to start drawing a structure. ? olo 18 Ar © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardcan someone please answer thisarrow_forwardPlease, please help me figure out the the moles, molarity and Ksp column. Step by step details because I've came up with about three different number and have no idea what I'm doing wrong.arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning



