Let k be a constant, F = F( x , y , z ) , G = G( x , y , z ) , and ϕ = ϕ ( x , y , z ) . Prove the following identities, assuming that all derivatives involved exist and are continuous. curl ( ∇ ϕ ) = 0
Let k be a constant, F = F( x , y , z ) , G = G( x , y , z ) , and ϕ = ϕ ( x , y , z ) . Prove the following identities, assuming that all derivatives involved exist and are continuous. curl ( ∇ ϕ ) = 0
Let k be a constant,
F
=
F(
x
,
y
,
z
)
,
G
=
G(
x
,
y
,
z
)
,
and
ϕ
=
ϕ
(
x
,
y
,
z
)
.
Prove the following identities, assuming that all derivatives involved exist and are continuous.
Given the vector v→=⟨3,-5⟩, find the magnitude and angle in which the vector points (measured in radians counterclockwise from the positive x-axis and 0≤θ<2π). Round each decimal number to two places.
please include radicals in answer
Find the arc length of the curve below on the given interval by integrating with respect to x.
4
4
+
1
8x
2
[1,3]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY