Let k be a constant, F = F( x , y , z ) , G = G( x , y , z ) , and ϕ = ϕ ( x , y , z ) . Prove the following identities, assuming that all derivatives involved exist and are continuous. div( ϕ F) = ϕ div F + ∇ ϕ ⋅ F
Let k be a constant, F = F( x , y , z ) , G = G( x , y , z ) , and ϕ = ϕ ( x , y , z ) . Prove the following identities, assuming that all derivatives involved exist and are continuous. div( ϕ F) = ϕ div F + ∇ ϕ ⋅ F
Let k be a constant,
F
=
F(
x
,
y
,
z
)
,
G
=
G(
x
,
y
,
z
)
,
and
ϕ
=
ϕ
(
x
,
y
,
z
)
.
Prove the following identities, assuming that all derivatives involved exist and are continuous.
Consider a function f: R? →
R°, the derivative of f isa
O 3 x 3 matrix
O 3 x 2 matrix
O 2 x 3 matrix
O 2 x 2 matrix
O 3 x 5 matrix
O 2 x 5 matrix
O 5 x 3 matrix
O 5 x 2 matrix
Let r(t) be a vector-valued function such that the magnitude of r(t) does not change over time. Use derivatives to show that the derivative r'(t) is perpendicular to the function r(t) for all times t.
Chapter 15 Solutions
Calculus Early Transcendentals, Binder Ready Version
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY