Physical Science (12th Edition), Standalone Book
12th Edition
ISBN: 9781260150544
Author: Bill W. Tillery
Publisher: McGraw Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15, Problem 8PEB
A 1 cm thick piece of lead with a surface area of 160 cm2 is placed on the surface of Mercury for 1 hour during the time the planet receives its peak solar energy. Assume the lead absorbs all of the solar energy, and its temperature when placed is at absolute zero. Will the energy received raise the temperature of the lead to its melting point of 327°C? If so, determine the mass of lead that melts. (Assume Lf of lead is 5 cal/g.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the escape velocity in km/s from Venus' exosphere, which begins about 168 km above the surface? Assume the gravitational constant is G = 6.67 × 10-11 m3 kg-1 s-2, and that Venus has a mass of 4.9e+24 kg and a radius of 5800.0 km.
Mercury has an orbit with semi-major axis a= 0.387AU and eccentricity e= 0.206 . Mercury is a slowly rotating planet with no atmosphere. What is the temperature of the subsolar point on Mercury at aphelion? What is the temperature of the subsolar point on Mercury at perihelion? (The ‘subsolar point’ is the location on the planet’s surface where the Sun is at the zenith.)
Venus' exosphere has a temperature of about 404 K. What is the thermal speed of hydrogen (in km/s) in Venus' exosphere? The mass of a hydrogen atom is 1.67 x 10-27 kg and Boltzmann's constant is k = 1.38 × 10-23 Joule/Kelvin.
Chapter 15 Solutions
Physical Science (12th Edition), Standalone Book
Ch. 15 -
1. The mass of the Sun is how much larger than...Ch. 15 -
2. The distance from Earth to the Sun is called a...Ch. 15 -
3. What type of planets are Mercury, Venus,...Ch. 15 -
4. Which of the following is most likely found on...Ch. 15 -
5. What is the outermost...Ch. 15 -
6. The planet that was named after the mythical...Ch. 15 -
7. A day on which planet is longer than a year on...Ch. 15 -
8. The day on which planet is about the same time...Ch. 15 -
9. Mars has distinct surface feature-related...Ch. 15 -
10. How many moons orbit...
Ch. 15 -
11. What is the largest planet in our solar...Ch. 15 -
12. Callisto, Europa, Ganymede, and Io...Ch. 15 -
13. The density of Jupiter is
a. 50 percent...Ch. 15 -
14. The only moon in the solar system with a...Ch. 15 -
15. Saturn’s rings are thought to be
a. composed...Ch. 15 -
16. The planet with the lowest average density,...Ch. 15 -
17. The planet that is not a giant...Ch. 15 - Prob. 18ACCh. 15 -
19. Area of the solar system where long-period...Ch. 15 -
20. Short-period comets have orbital periods...Ch. 15 -
21. Remnants of comets and asteroids found in...Ch. 15 -
22. Meteorites are classified into all of the...Ch. 15 -
23. The most widely accepted theory on the origin...Ch. 15 -
24. The belt of asteroids between Mars and...Ch. 15 -
25. Which of the following planets would be...Ch. 15 -
26. Which of the following planets probably still...Ch. 15 -
27. Venus appears the brightest when it is in...Ch. 15 -
28. The small body with a composition and...Ch. 15 -
29. A small body from space that falls on the...Ch. 15 -
30. Planets in our solar system are classified...Ch. 15 -
31. What separates the terrestrial planets from...Ch. 15 -
32. The planet that has the shortest “year” among...Ch. 15 -
33. What planet is called the morning star and...Ch. 15 -
34. Venus “shines” because it is
a. composed of...Ch. 15 -
35. On Venus, the sun rises in the west. This is...Ch. 15 -
36. The “sister” planet to Earth...Ch. 15 -
37. What feature on Mars was considered by some...Ch. 15 -
38. Jupiter radiates twice as much energy as it...Ch. 15 -
39. The Great Red Spot is thought to be
a. a...Ch. 15 -
40. The metallic hydrogen that surrounds the core...Ch. 15 -
41. A shooting star is a...Ch. 15 -
1. Describe the protoplanet nebular model of the...Ch. 15 -
2. What are the basic differences between the...Ch. 15 -
3. Describe the surface and atmospheric...Ch. 15 -
4. What evidence exists that Mars at one time had...Ch. 15 -
5. Describe the internal structure of Jupiter and...Ch. 15 -
6. What are the rings of Saturn?
Ch. 15 -
7. Describe some of the unusual features found on...Ch. 15 -
8. What are the similarities and the differences...Ch. 15 -
9. Give one idea about why the Great Red Spot...Ch. 15 -
10. What is so unusual about the motions and...Ch. 15 -
11. What evidence exists today that the number of...Ch. 15 -
12. Using the properties of the planets other...Ch. 15 -
13. What are “shooting stars”? Where do they come...Ch. 15 -
14. What is an asteroid? What evidence indicates...Ch. 15 -
15. Where do comets come from? Why are...Ch. 15 -
16. What is a meteor? What is the most likely...Ch. 15 -
17. What is a meteorite? What is the most likely...Ch. 15 -
18. Technically speaking, what is wrong with...Ch. 15 -
19. What are the primary differences between the...Ch. 15 -
1. What are the significant similarities and...Ch. 15 - Prob. 2FFACh. 15 -
3. Evaluate the statement that Venus is Earth's...Ch. 15 -
4. Describe the possibility and probability of...Ch. 15 -
5. Provide arguments that Pluto should be...Ch. 15 -
6. Explain why is it difficult to count the...Ch. 15 - Prob. 1IICh. 15 - Prob. 1PEACh. 15 - Prob. 2PEACh. 15 - Prob. 3PEACh. 15 - Prob. 4PEACh. 15 - Prob. 5PEACh. 15 - Prob. 6PEACh. 15 - Prob. 7PEACh. 15 - Prob. 8PEACh. 15 - Prob. 9PEACh. 15 - Prob. 10PEACh. 15 - Prob. 11PEACh. 15 - Prob. 12PEACh. 15 - Prob. 13PEACh. 15 - Prob. 14PEACh. 15 - Prob. 15PEACh. 15 -
1. Based on the density and diameter in km...Ch. 15 - Prob. 2PEBCh. 15 -
3. A scale model of the solar system is being...Ch. 15 -
4. How many times has Uranus rotated on its axis...Ch. 15 -
5. An elementary school class is building a scale...Ch. 15 -
6. A class is building scale models of the...Ch. 15 - Prob. 7PEBCh. 15 -
8. A 1 cm thick piece of lead with a surface area...Ch. 15 -
9. Assume an astronaut at a space station on Mars...Ch. 15 -
10. What is the mass of the Sun, in kilograms,...Ch. 15 -
11. What is the mass of the Sun, in kilograms,...Ch. 15 -
12. Based on Kepler’s third law, what is the...Ch. 15 -
13. Based on Kepler’s third law, what is the...Ch. 15 - Prob. 14PEBCh. 15 -
15. Assuming a circular orbit, what is the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Assume that a planet will have lost its initial atmosphere by the present time if the average molecular speed exceeds one-sixth of the escape speed. What would Mercury's mass have to be in order for it to still have a nitrogen atmosphere? The molecular weight of nitrogen is 28.arrow_forwardPure, solid water ice has an albedo A≈0.35. What is the minimum distance from the Sun at which a rapidly rotating ice cube would remain frozen? Between which two planets does this distance lie?arrow_forwardWhich of the following condition will be true for a planet to have atmosphere? [A] velocity of molecules in its atmosphere is lesser than escape velocity [B] velocity of molecules in its atmosphere is greater than escape velocity [C] velocity of molecules in its atmosphere is twice the escape velocity [D] velocity of molecules in its atmosphere is equal to the escape velocityarrow_forward
- On the night side of Venus, we find that the brightest wavelength, that is the wavelength this region of the planet is emitting the most energy, is about 3.9 micrometres (3.9x10-6 meters). Approximately how warm is the planet in this region?arrow_forwardCalculate the energy flux density, Fm , at the average distance of Mars from the Sun, rm , (energy flux divided by surface area of sphere). Mars' distance from the Sun = rm = 2.279 x 1013 cmFm = L /(4prm2) = ________________ ergs/s Next Calcuate the Amount of Solar Energy absorbed by Mars is the surface area of Mars which is facing the Sun (1/2 of Mars' surface area = 4pdm2 / 2 = 2pdm2 ) . Where dm = 3.398 x 106 cm is the radius of Mars. So Mars receives :arrow_forwardPlease workout the problem on a piece of paper. Equation: PV=nRTarrow_forward
- The clouds that surround Venus are so thick that the planet actually absorbs less sunlight than the Earth. Nevertheless, Venus has a surface temperature of more than 400 C. Which of these best explains this high surface temperature?arrow_forwardAssume that Venus has an isothermal atmosphere with a surface temperature of 750 K. The surface pressure of Venus is 90 times the Earth's surface pressure which is about 1013mb. Also assume that the carbon dioxide dominant atmosphere of Venus is photodissociated and oxygen atoms are produced. These oxygen atoms stop the solar wind at the ionopause distance where the atmospheric pressure of Venus and the dynamic pressure of the solar wind are in balance. Accordingly, calculate the lonopause distance of the planet Venus if the solar wind density is 7 #/cm² and solar wind speed is 410 km/sec.arrow_forwardConsider the greenhouse effect in an atmosphere model consisting of two infrared-opaque layers. Find the temperatures of both layers and the temperature of the planet's surface.arrow_forward
- The total mass of this planet's atmosphere may be higher than the Earth's but the gases present must be very lighter ones like hydrogen and helium. The escape velocity of the planet will be very high. Due to the high escape velocity, the light gases were not able to escape and hence forming a thick atmosphere Would the atmosphere for this planet be thicker or thinner than that of the Earth?arrow_forward100% Normal text Arlal 12.5 | I1 1 | 2 | 3 3. Fill out this data table with information you have collected about the solar system planets. Characteristics Unit Mercury Venus Earth 330 4,870 5,970 Mass 1024 g 61 928 1,083 Volume 1024 cm3 5.4 5.4 50 Density g/cm3 58 106 km 100 100 Distance from Sun Radius km Crust Thickness km Atmosphere Height kmarrow_forwardB2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY