(a) Interpretation: The normality of the given solution is to be calculated. 0.250 M HCl . Concept Introduction: The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element. The number of moles is calculated by the formula, Moles = Mass g Molar mass The molarity is calculated by the formula, Molarity = Number of moles of solute Volume of solution L The normality of the solution is calculated by the formula, Normality = Molarity × Number of H + or OH − ions .
(a) Interpretation: The normality of the given solution is to be calculated. 0.250 M HCl . Concept Introduction: The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element. The number of moles is calculated by the formula, Moles = Mass g Molar mass The molarity is calculated by the formula, Molarity = Number of moles of solute Volume of solution L The normality of the solution is calculated by the formula, Normality = Molarity × Number of H + or OH − ions .
Solution Summary: The author explains that the atomic mass of an element is defined as the sum of protons and neutrons. The molarity of HCl solution is calculated by the formula.
The normality of the given solution is to be calculated.
0.250M
HCl.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
Moles=MassgMolarmass
The molarity is calculated by the formula,
Molarity=NumberofmolesofsoluteVolumeofsolutionL
The normality of the solution is calculated by the formula,
Normality=Molarity×NumberofH+orOH−ions.
Interpretation Introduction
(b)
Interpretation:
The normality of the given solution is to be calculated.
0.105M
H2SO4.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
Moles=MassgMolarmass
The molarity is calculated by the formula,
Molarity=NumberofmolesofsoluteVolumeofsolutionL
The normality of the solution is calculated by the formula,
Normality=Molarity×NumberofH+orOH−ions.
Interpretation Introduction
(c)
Interpretation:
The normality of the given solution is to be calculated.
5.3×10−2M
H3PO4.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
Moles=MassgMolarmass
The molarity is calculated by the formula,
Molarity=NumberofmolesofsoluteVolumeofsolutionL
The normality of the solution is calculated by the formula,
MISSED THIS? Read Section 19.9 (Pages 878-881); Watch IWE 19.10
Consider the following reaction:
CH3OH(g)
CO(g) + 2H2(g)
(Note that AG,CH3OH(g) = -162.3 kJ/mol and AG,co(g)=-137.2 kJ/mol.)
Part A
Calculate AG for this reaction at 25 °C under the following conditions:
PCH₂OH
Pco
PH2
0.815 atm
=
0.140 atm
0.170 atm
Express your answer in kilojoules to three significant figures.
Ο ΑΣΦ
AG = -150
Submit
Previous Answers Request Answer
□?
kJ
× Incorrect; Try Again; 2 attempts remaining
Calculate the free energy change under nonstandard conditions (AGrxn) by using the following relationship:
AGrxn = AGrxn + RTInQ,
AGxn+RTInQ,
where AGxn is the standard free energy change, R is the ideal gas constant, T is the temperature in kelvins, a
is the reaction quotient.
Provide Feedback
Next >
Identify and provide a brief explanation of Gas Chromatography (GC) within the context of chemical analysis of food. Incorporate the specific application name, provide a concise overview of sample preparation methods, outline instrumental parameters and conditions ultilized, and summarise the outcomes and findings achieved through this analytical approach.
Identify and provide a concise explanation of the concept of signal-to-noise ratio (SNR) in the context of chemical analysis. Provide specific examples.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell