
Concept explainers
Which of the following solutions contains the greatest number of particles? Support your answer.
.0 mL of 0 10 M sodium chloride
.0 mL of 0.10 M calcium chloride
.0 mL of 0.10 M iron(III) chloride
.0 mL of 0.10 M potassium bromide
.0 mL of 0.10 M sucrose (table sugar)

Interpretation:
The solution containing the greatest number of particles is to be predicted.
Concept Introduction:
There are many ways to determine the concentration of the solution. One of the most used methods is molarity. Molarity may be defined as the number of moles of the solute in one liter of the whole solution. Thus, the molarity can be calculated as,
Answer to Problem 11ALQ
The correct option is (b).
Explanation of Solution
Reason for correct option:
(b) The molarity of the
Substitute the values of molarity and volume in the given formula.
The total number of moles in the given solution is
To calculate the number of particles in a solution the formula used is,
Avogadro number is equal to the number of particles present in one mole, that is,
Substitute the values of moles and Avogadro number in the given formula.
One mole of
Reasons for incorrect options:
(a) The molarity of the
Substitute the values of molarity and volume in the given formula.
The total number of moles in the given solution is
To calculate the number of particles in a solution the formula used is,
Avogadro number is equal to the number of particles present in one mole, that is,
Substitute the values of moles and Avogadro number in the given formula.
One mole of
(c) The molarity of the
Substitute the values of molarity and volume in the given formula.
The total number of moles in the given solution is
To calculate the number of particles in a solution the formula used is,
Avogadro number is equal to the number of particles present in one mole, that is,
Substitute the values of moles and Avogadro number in the given formula.
One mole of
(d) The molarity of the
Substitute the values of molarity and volume in the given formula.
The total number of moles in the given solution is
To calculate the number of particles in a solution the formula used is,
Avogadro number is equal to the number of particles present in one mole, that is,
Substitute the values of moles and Avogadro number in the given formula.
One mole of
(e) The molarity of the
Substitute the values of molarity and volume in the given formula.
The total number of moles in the given solution is
To calculate the number of particles in a solution the formula used is,
Avogadro number is equal to the number of particles present in one mole, that is,
Substitute the values of moles and Avogadro number in the given formula.
The total number of particles present in the solution is
Want to see more full solutions like this?
Chapter 15 Solutions
Introductory Chemistry: A Foundation
Additional Science Textbook Solutions
Organic Chemistry
Physical Universe
SEELEY'S ANATOMY+PHYSIOLOGY
Cosmic Perspective Fundamentals
General, Organic, and Biological Chemistry - 4th edition
Fundamentals of Anatomy & Physiology (11th Edition)
- 20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCl. What is the molarity of the HCl?arrow_forward20.00 mL of 0.025 M HCl is titrated with 0.035 M KOH. What volume of KOH is needed?arrow_forward20.00 mL of 0.150 M HCl is titrated with 37.75 mL of NaOH. What is the molarity of the NaOH?arrow_forward
- Calculate the pH of 0.450 M KOH.arrow_forwardWhich does NOT describe a mole? A. a unit used to count particles directly, B. Avogadro’s number of molecules of a compound, C. the number of atoms in exactly 12 g of pure C-12, D. the SI unit for the amount of a substancearrow_forward5 What would the complete ionic reaction be if aqueous solutions of potassium sulfate and barium acetate were mixed? ed of Select one: O a 2 K SO4 + Ba2 +2 C₂H3O21 K+SO4 + Ba2+ + 2 C2H3O21 K+SO42 + Ba2 +2 C2H3O2 BaSO4 +2 K+ + 2 C2H3O estion Ob. O c. Od. 2 K SO4 +Ba2 +2 C₂H₂O₂ BaSO4 + K+ + 2 C2H3O BaSO4 + K + 2 C2H301 →Ba² +SO42 +2 KC2H3O s pagearrow_forward
- (28 pts.) 7. Propose a synthesis for each of the following transformations. You must include the reagents and product(s) for each step to receive full credit. The number of steps is provided. (OC 4) 4 steps 4 steps OH b.arrow_forwardLTS Solid: AT=Te-Ti Trial 1 Trial 2 Trial 3 Average ΔΗ Mass water, g 24.096 23.976 23.975 Moles of solid, mol 0.01763 001767 0101781 Temp. change, °C 2.9°C 11700 2.0°C Heat of reaction, J -292.37J -170.473 -193.26J AH, kJ/mole 16.58K 9.647 kJ 10.85 kr 16.58K59.64701 KJ mol 12.35k Minimum AS, J/mol K 41.582 mol-k Remember: q = mCsAT (m = mass of water, Cs=4.184J/g°C) & qsin =-qrxn & Show your calculations for: AH in J and then in kJ/mole for Trial 1: qa (24.0969)(4.1845/g) (-2.9°C)=-292.37J qsin = qrxn = 292.35 292.37J AH in J = 292.375 0.2923kJ 0.01763m01 =1.65×107 AH in kJ/mol = = 16.58K 0.01763mol mol qrx Minimum AS in J/mol K (Hint: use the average initial temperature of the three trials, con Kelvin.) AS=AHIT (1.65×10(9.64×103) + (1.0 Jimaiarrow_forwardFor the compound: C8H17NO2 Use the following information to come up with a plausible structure: 8 This compound has "carboxylic acid amide" and ether functional groups. The peaks at 1.2ppm are two signals that are overlapping one another. One of the two signals is a doublet that represents 6 hydrogens; the other signal is a quartet that represents 3 hydrogens.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning




