
(a)
Interpretation:
The new molarity after the addition of water is to be calculated.
Concept Introduction:
The
The number of moles is calculated by the formula,
The molarity is calculated by the formula,

Answer to Problem 56QAP
The new molarity that results when
Explanation of Solution
The initial volume and molarity of
The conversion of units of
The number of moles of a solute is calculated by the formula,
Substitute the values of initial volume and molarity of
It is given that
The conversion of units of
Thus, the total volume is calculated by the formula,
Substitute the values of initial volume and volume of water added in the equation (2).
The new molarity of the solution is calculated by the formula,
Substitute the values of number of moles of solute and final volume in the equation (3).
Therefore, the new molarity that results when
(b)
Interpretation:
The new molarity after the addition of water is to be calculated.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
The molarity is calculated by the formula,

Answer to Problem 56QAP
The new molarity that results when
Explanation of Solution
The initial volume and molarity of
The conversion of units of
The number of moles of a solute is calculated by the formula,
Substitute the values of initial volume and molarity of
It is given that
The conversion of units of
Thus, the total volume is calculated by the formula,
Substitute the values of initial volume and volume of water added in the equation (2).
The new molarity of the solution is calculated by the formula,
Substitute the values of number of moles of solute and final volume in the equation (3).
Therefore, the new molarity that results when
(c)
Interpretation:
The new molarity after the addition of water is to be calculated.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
The molarity is calculated by the formula,

Answer to Problem 56QAP
The new molarity that results when
Explanation of Solution
The initial volume and molarity of
The number of moles of a solute is calculated by the formula,
Substitute the values of initial volume and molarity of
It is given that
The conversion of units of
Thus, the total volume is calculated by the formula,
Substitute the values of initial volume and volume of water added in the equation (2).
The new molarity of the solution is calculated by the formula,
Substitute the values of number of moles of solute and final volume in the equation (3).
Therefore, the new molarity that results when
(d)
Interpretation:
The new molarity after the addition of water is to be calculated.
Concept Introduction:
The atomic mass of an element is defined as the sum of number of protons and number of neutrons. Molar mass of an element is determined from atomic mass of an element.
The number of moles is calculated by the formula,
The molarity is calculated by the formula,

Answer to Problem 56QAP
The new molarity that results when
Explanation of Solution
The initial volume and molarity of
The conversion of units of
The number of moles of a solute is calculated by the formula,
Substitute the values of initial volume and molarity of
It is given that
The conversion of units of
Thus, the total volume is calculated by the formula,
Substitute the values of initial volume and volume of water added in the equation (2).
The new molarity of the solution is calculated by the formula,
Substitute the values of number of moles of solute and final volume in the equation (3).
Therefore, the new molarity that results when
Want to see more full solutions like this?
Chapter 15 Solutions
Introductory Chemistry: A Foundation
- Calculate the pH and the pOH of each of the following solutions at 25 °C for which the substances ionize completely: (a) 0.000259 M HClO4arrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardDetermine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. NaN₃arrow_forward
- A. Draw the structure of each of the following alcohols. Then draw and name the product you would expect to produce by the oxidation of each. a. 4-Methyl-2-heptanol b. 3,4-Dimethyl-1-pentanol c. 4-Ethyl-2-heptanol d. 5,7-Dichloro-3-heptanolarrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardCan I please get help with this.arrow_forward
- Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. N₂H₅ClO₄arrow_forwardPlease help me with identifying these.arrow_forwardCan I please get help with this?arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning




