
Banks have many different types of accounts, often with different rules for fees associated with transactions such as withdrawals. Customers are allowed to transfer funds between accounts incurring the appropriate fees associated with withdrawal of funds from one account.
Write a
For the classes, create a base class called BankAccount that has the name of the owner of the account (a string) and the balance in the account (double) as data members. Include member functions deposit and withdraw (each with a double for the amount as an argument) and accessor functions getName and getBalance. Deposit will add the amount to the balance (assuming the amount is nonnegative) and withdraw will subtract the amount from the balance (assuming the amount is nonnegative and less than or equal to the balance). Also create a class called MoneyMarketAccount that is derived from BankAccount. In a MoneyMarketAccount the user gets two free withdrawals in a given period of time (don’t worry about the time for this problem). After the free withdrawals have been used, a withdrawal fee of $1.50 is deducted from the balance per withdrawal. Hence, the class must have a data member to keep track of the number of withdrawals. It also must override the withdraw definition. Finally, create a CDAccount class (to model a Certificate of Deposit) derived from BankAccount that in addition to having the name and balance also has an interest rate. CDs incur penalties for early withdrawal of funds. Assume that a withdrawal of funds (any amount) incurs a penalty of 25% of the annual interest earned on the account. Assume the amount withdrawn plus the penalty are deducted from the account balance. Again, the withdraw function must override the one in the base class. For all three classes, the withdraw function should return an integer indicating the status (either ok or insufficient funds for the withdrawal to take place). For the purposes of this exercise, do not worry about other functions and properties of these accounts (such as when and how interest is paid).

Want to see the full answer?
Check out a sample textbook solution
Chapter 15 Solutions
Problem Solving with C++ (9th Edition)
Additional Engineering Textbook Solutions
Introduction To Programming Using Visual Basic (11th Edition)
Concepts Of Programming Languages
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Web Development and Design Foundations with HTML5 (8th Edition)
Starting Out with C++ from Control Structures to Objects (9th Edition)
Degarmo's Materials And Processes In Manufacturing
- Briefly describe the issues involved in using ATM technology in Local Area Networksarrow_forwardFor this question you will perform two levels of quicksort on an array containing these numbers: 59 41 61 73 43 57 50 13 96 88 42 77 27 95 32 89 In the first blank, enter the array contents after the top level partition. In the second blank, enter the array contents after one more partition of the left-hand subarray resulting from the first partition. In the third blank, enter the array contents after one more partition of the right-hand subarray resulting from the first partition. Print the numbers with a single space between them. Use the algorithm we covered in class, in which the first element of the subarray is the partition value. Question 1 options: Blank # 1 Blank # 2 Blank # 3arrow_forward1. Transform the E-R diagram into a set of relations. Country_of Agent ID Agent H Holds Is_Reponsible_for Consignment Number $ Value May Contain Consignment Transports Container Destination Ф R Goes Off Container Number Size Vessel Voyage Registry Vessel ID Voyage_ID Tonnagearrow_forward
- I want to solve 13.2 using matlab please helparrow_forwarda) Show a possible trace of the OSPF algorithm for computing the routing table in Router 2 forthis network.b) Show the messages used by RIP to compute routing tables.arrow_forwardusing r language to answer question 4 Question 4: Obtain a 95% standard normal bootstrap confidence interval, a 95% basic bootstrap confidence interval, and a percentile confidence interval for the ρb12 in Question 3.arrow_forward
- using r language Obtain a bootstrap t confidence interval estimate for the correlation statistic in Example 8.2 (law data in bootstrap).arrow_forwardusing r language Compute a jackknife estimate of the bias and the standard error of the correlation statistic in Example 8.2.arrow_forwardusing r languagearrow_forward
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning
- EBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTProgramming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageMicrosoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,




