Concept explainers
Interpretation:
The amount of energy required to raise the temperature of
Concept introduction:
The amount of energy required to change the state of a substance is known as enthalpy. It is the different in the energy of final and initial state of a substance. The negative and positive sign of enthalpy indicates the energy released and energy absorbed, respectively, during the phase change.
Answer to Problem 7PE
The amount of energy required to raise the temperature of
Explanation of Solution
The mass of solid zinc is
The melting temperature of the solid zinc is
The required initial temperature is
The required final temperature is
The amount of energy required to raise the temperature of zinc from
Where,
•
•
•
•
The specific heat of zinc (solid) is
Substitute the mass, final, initial temperature and specific heat of zinc in equation (1).
The amount of energy required for phase transformation is calculated by the formula shown below.
Where,
•
The heat of fusion of zinc is
Substitute the mass and heat of fusion in equation (2).
The amount of energy required to raise the temperature of zinc from
Where,
•
•
•
•
The specific heat of zinc (liquid) is
Substitute the mass, final, initial temperature and specific heat of zinc in equation (3).
The total amount of energy sample gained when temperature is changed from
Substitute the value of energies in the above equation.
Therefore, the amount of energy required to raise the temperature of
The amount of energy required to raise the temperature of
Want to see more full solutions like this?
Chapter 15 Solutions
Bundle: Introductory Chemistry: An Active Learning Approach, 6th + LMS Integrated for OWLv2, 4 terms (24 months) Printed Access Card
- How many kilojoules of heat will be released when exactly 1 mole of manganese, Mn, is burned to form Mn3O4(s) at standard state conditions?arrow_forwardData are given in Appendix 1 for white phosphorus, P4(s). P4(g) has the following thermodynamic values: Hf=58.9kJ/mol , S=280.0J/kmol . What is the temperature at which white phosphorus sublimes at 1 atm pressure?arrow_forwardThe reaction of quicklime, CaO, with water produces slaked lime, Ca(OH)2, which is widely used in the construction industry to make mortar and plaster. The reaction of quicklime and water is highly exothermic: CaO(s)+H2O(l)Ca(OH)2(s)H=350kJmol1 (a) What is the enthalpy of reaction per gram of quicklime that reacts?. (b) How much heat, in kilojoules, is associated with the production of 1 ton of slaked lime?arrow_forward
- From the data given in Appendix I, determine the standard enthalpy change and the standard free energy change for each of the following reactions: (a) BF3(g)+3H2O(l)B(OH)3(s)+3HF(g) (b) BCl3(g)+3H2O(l)B(OH)3+3HCl(g) (c) B2H6(g)+6H2O(l)2B(OH)3(s)+6H2(g)arrow_forwardHow much heat is produced by combustion of 125 g of methanol under standard state conditions?arrow_forwardA reaction used to produce the silicon for semiconductors from sand (SiO2), can be broken up into three steps: SiO2(s)+2C(s)Si(s)+2CO(g)H=689.9kJ Si(s)+2Cl2(s)SiCl4(g)H=657.0kJ SiCl4(g)+2Mg(s)2MgCl2(g)+Si(s)H=625.6kJ (a) Write a thermochemical equation for the overall reaction where silicon is obtained from silicon dioxide and CO and MgCl2 are by-products. (b) What is H for the formation of one mole of silicon? (c) Is the overall reaction exothermic?arrow_forward
- Consider the Haber process: N2(g)+3H2(g)2NH3(g);H=91.8kJ The density of ammonia at 25C and 1.00 atm is 0.696 g/L. The density of nitrogen, N2, is 1.145 g/L, and the molar heat capacity is 29.12 J/(mol C). (a) How much heat is evolved in the production of 1.00 L of ammonia at 25C and 1.00 atm? (b) What percentage of this heat is required to heat the nitrogen required for this reaction (0.500 L) from 25C to 400C, the temperature at which the Haber process is run?arrow_forwardThree reactions very important to the semiconductor industry are The reduction of silicon dioxide to crude silicon, SiO2(s) + 2 C(s) → Si(s) + 2 CO(g) ΔrH° = 689.9 kJ/mol The formation of silicon tetrachloride from crude silicon, Si(s) + 2 Cl2(g) → SiCl4(g) ΔrH° = −657.01 kJ/mol The reduction of silicon tetrachloride to pure silicon with magnesium, SiCl4(g) + 2 Mg(s) → 2 MgCl2(s) + Si(s) ΔrH° = −625.6 kJ/mol Calculate the overall enthalpy change when 1.00 mol sand, SiO2, changes into very pure silicon by this series of reactions.arrow_forwardHow many kilojoules of heat will be released when exactly 1 mole of iron, Fe, is burned to form Fe2O3(s) at standard state conditions?arrow_forward
- The thermite reaction was once used to weld rails: 2Al(s)+Fe2O3(s)Al2O3(s)+2Fe(s)(a) Using heat of formation data, calculate H for this reaction. (b) Take the specific heats of Al2O3 and Fe to be 0.77 and 0.45 J/g C, respectively. Calculate the temperature to which the products of this reaction will be raised, starting at room temperature, by the heat given off in the reaction. (c) Will the reaction produce molten iron (mpFe=1535C,Hfus=270J/g)?arrow_forwardHow much heat is produced by burning 4.00 moles of acetylene under standard state conditions?arrow_forwardUse the appropriate tables to calculate H for (a) the reaction between copper(II) oxide and carbon monoxide to give copper metal and carbon dioxide. (b) the decomposition of one mole of methyl alcohol (CH3OH) to methane and oxygen gases.arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning