Concept explainers
In the production of printed circuit boards, errors in the alignment of electrical connections are a source of scrap. The data in the RegistrationError-HighCost contains the registration error and the temperature used in the production of circuit boards is an experiment in which higher cost material was used.
a. Construct a
b. Fit a quadratic regression model to predict registration error and state and
c. Perform a residual analysis on the results and determine whether the regression model is valid.
d. At the 0.05 level of significance, is there a significant quadratic relationship between temperature and registration error?
e. At the 0.05 level of significance, determine whether the quadratic model is a better fir than the linear model.
f. Interpret the meaning of the coefficient of multiple determination.
g. Compute the adjusted
h. What conclusions can you reach concerning the relationship between registration error and temperature?
Trending nowThis is a popular solution!
Chapter 15 Solutions
EBK BASIC BUSINESS STATISTICS
- Find the equation of the regression line for the following data set. x 1 2 3 y 0 3 4arrow_forwardOlympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forwardWhat does the y -intercept on the graph of a logistic equation correspond to for a population modeled by that equation?arrow_forward
- 13) Use computer software to find the multiple regression equation. Can the equation be used for prediction? An anti-smoking group used data in the table to relate the carbon monoxide( CO) of various brands of cigarettes to their tar and nicotine (NIC) content. 13). CO TAR NIC 15 1.2 16 15 1.2 16 17 1.0 16 6. 0.8 1 0.1 1 8. 0.8 8. 10 0.8 10 17 1.0 16 15 1.2 15 11 0.7 9. 18 1.4 18 16 1.0 15 10 0.8 9. 0.5 18 1.1 16 A) CO = 1.37 + 5.50TAR – 1.38NIC; Yes, because the P-value is high. B) CÓ = 1.37 - 5.53TAR + 1.33NIC; Yes, because the R2 is high. C) CO = 1.25 + 1.55TAR – 5.79NIC; Yes, because the P-value is too low. D) CO = 1.3 + 5.5TAR - 1.3NIC; Yes, because the adjusted R2 is high. %3Darrow_forwardThe residuals for data set A and data set B were calculated and plotted on separate residual plots. If the residuals for data set A do not form a pattern and the residuals for data set B do not form a pattern, what can be concluded? OA. A linear model is a good fit for data set A but not data set B. O B. A linear model is a good fit for data set B but not data set A. AC. A linear model is a good fit for both data sets. D. A linear model is not a good fit for either data set.arrow_forwardA large city hospital conducted a study to investigate the relationship between the number of unauthorized days that employees are absent per year and the distance (miles) between home and work for the employees. A sample of 10 employees was selected and the following data were collected. Develop a scatter diagram for these data. Does a linear relationship appear reasonable? Explain. Develop the least squares estimated regression equation that relates the distance to work to the number of days absent. Predict the number of days absent for an employee that lives 5 miles from the hospital.arrow_forward
- A marketing professor at Givens College is interested in the relationship between hoursspent studying and total points earned in a course. Data collected on 156 students whotook the course last semester are provided in the file MktHrsPts.a. Develop a scatter chart for these data. What does the scatter chart indicate about therelationship between total points earned and hours spent studying?b. Develop an estimated regression equation showing how total points earned is relatedto hours spent studying. What is the estimated regression model?c. Test whether each of the regression parameters b0 and b1 is equal to zero at a 0.01level of significance. What are the correct interpretations of the estimated regressionparameters? Are these interpretations reasonable?d. How much of the variation in the sample values of total point earned does the modelyou estimated in part b explain?e. Mark Sweeney spent 95 hours studying. Use the regression model you estimated inpart b to predict the total points…arrow_forward2. A botanist is willing to understand the relation between volume, girth and height of black cherry trees. To this end, she collects data that is presented in trees table of the datasets library. Build a predictive multiple linear regression model for volume using girth and height as independent variables. a. What does the F-test tell about the model? Explain the result using the null hypothesis of the test. b. Provide confidence and prediction intervals for a black cherry tree with 10 inch of girth and 82 feet tall.arrow_forwardA study is conducted to determine if there is a relationship between the two variables, blood haemoglobin (Hb) levels and packed cell volumes (PCV) in the female population. A simple linear regression analysis was performed using SPSS. Based on the SPSS output of the ANOVA table, which of the following statements is the CORRECT interpretation? 1. The regression model statistically significantly predicts the blood haemoglobin level. 2. About 39.98 % of variance in Hb is explained by PCV. 3. The regression model does not fit the data. 4. There is significant contribution of Hb towards PCV.arrow_forward
- Suppose that a kitchen cabinet warehouse company would like to be able to predict the area of a customer’s kitchen using the number of cabinets and the kitchen ceiling height. To do so data is collected on the following variables from a random sample of customers: Area – area of the kitchen in square feet Height – ceiling height in the kitchen (from floor to ceiling) in inches Cabinets – number of cabinets in the kitchen Suppose that a multiple linear regression model was fit to the data and that the following output resulted: Coefficients: (Intercept)HeightCabinets Estimate-57.98771.2760.3393 Std. Error8.63820.26430.1302 t value -6.7134.8282.607 Pr(>|t|)2.75e-074.44e-050.0145 10 Question 10 This is not a form; we suggest that you use the browse mode and read all parts of the question carefully. Which of the following is the correct interpretation of the coefficient for Cabinets? For a kitchen with a given ceiling height, the average number of cabinets…arrow_forwardSuppose that a kitchen cabinet warehouse company would like to be able to predict the area of a customer’s kitchen using the number of cabinets and the kitchen ceiling height. To do so data is collected on the following variables from a random sample of customers: Area – area of the kitchen in square feet Height – ceiling height in the kitchen (from floor to ceiling) in inches Cabinets – number of cabinets in the kitchen Suppose that a multiple linear regression model was fit to the data and that the following output resulted: Coefficients: (Intercept)HeightCabinets Estimate-57.98771.2760.3393 Std. Error8.63820.26430.1302 t value -6.7134.8282.607 Pr(>|t|)2.75e-074.44e-050.0145 Why is the interpretation of the constant term (i.e. "intercept") not meaningful for this example? The predicted area will be negative when the number of cabinets is zero and the height of the kitchen is also zero. But we cannot have a negative area, nor a kitchen ceiling height of 0 inches.…arrow_forwardSuppose that a kitchen cabinet warehouse company would like to be able to predict the area of a customer’s kitchen using the number of cabinets and the kitchen ceiling height. To do so data is collected on the following variables from a random sample of customers: Area – area of the kitchen in square feet Height – ceiling height in the kitchen (from floor to ceiling) in inches Cabinets – number of cabinets in the kitchen Suppose that a multiple linear regression model was fit to the data and that the following output resulted: Coefficients: (Intercept)HeightCabinets Estimate-57.98771.2760.3393 Std. Error8.63820.26430.1302 t value -6.7134.8282.607 Pr(>|t|)2.75e-074.44e-050.0145 What is the predicted area of a kitchen with a height of 96 inches and 10 cabinets? Report your answer to 1 decimal place. square feetarrow_forward
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill