EBK BASIC BUSINESS STATISTICS
14th Edition
ISBN: 9780134685168
Author: STEPHAN
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 18PS
Refer to Problem 14.6 on page 542. Perform a multiple
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please use linear regression test statistics, and defined everything -- all parts.
Suppose the following data were collected from a sample of 1515 CEOs relating annual salary to years of experience and the economic sector their company belongs to. Use statistical software to find the following regression equation:
SALARYi=b0+b1EXPERIENCEi+b2SERVICEi+b3INDUSTRIALi+eiSALARY�=�0+�1EXPERIENCE�+�2SERVICE�+�3INDUSTRIAL�+��.
Is there enough evidence to support the claim that on average, CEOs in the industrial sector have lower salaries than CEOs in the financial sector at the 0.050.05 level of significance? If yes, write the regression equation in the spaces provided with answers rounded to two decimal places. Else, select "There is not enough evidence."
Copy Data
CEO Salaries
Salary
Experience
Service (1 if service sector, 0 otherwise)
Industrial (1 if industrial sector, 0 otherwise)
Financial (1 if financial sector, 0 otherwise)
141150141150
1010
11
00
00
176000176000
3232
11
00
00
139938139938
99
00
11
00
203577203577
3030
00
00
11
148032148032
22
00…
Suppose the following data were collected from a sample of 1515 CEOs relating annual salary to years of experience and the economic sector their company belongs to. Use statistical software to find the following regression equation:
SALARYi=b0+b1EXPERIENCEi+b2SERVICEi+b3INDUSTRIALi+eiSALARY�=�0+�1EXPERIENCE�+�2SERVICE�+�3INDUSTRIAL�+��.
Is there enough evidence to support the claim that on average, CEOs in the service sector have lower salaries than CEOs in the financial sector at the 0.010.01 level of significance? If yes, write the regression equation in the spaces provided with answers rounded to two decimal places. Else, select "There is not enough evidence."
Copy Data
CEO Salaries
Salary
Experience
Service (1 if service sector, 0 otherwise)
Industrial (1 if industrial sector, 0 otherwise)
Financial (1 if financial sector, 0 otherwise)
144225144225
1010
11
00
00
187765187765
2020
00
00
11
142500142500
66
11
00
00
169650169650
2828
11
00
00
167250167250
3131
00…
Chapter 15 Solutions
EBK BASIC BUSINESS STATISTICS
Ch. 15 - The following is the quadratic regression equation...Ch. 15 - Business actively recruit business student with...Ch. 15 - A study was conducted on automobile engines to...Ch. 15 - Prob. 4PSCh. 15 - In the production of printed circuit boards,...Ch. 15 - An automotive sales manager wishes to examine the...Ch. 15 - Researchers wanted to investigate the relationship...Ch. 15 - Prob. 8PSCh. 15 - Prob. 9PSCh. 15 - Prob. 10PS
Ch. 15 - Using the data of Problem 15.4 on page 600, stored...Ch. 15 - Using the data of Problem 15.6 on page 601, stored...Ch. 15 - Using the data of Problem 15.6 on page 601 stored...Ch. 15 - If the coefficient of determination between two...Ch. 15 - If the coefficient of determination between two...Ch. 15 - Prob. 16PSCh. 15 - Refer to Problem 14.5 on page 542. Perform a...Ch. 15 - Refer to Problem 14.6 on page 542. Perform a...Ch. 15 - Refer to Problem 14.7 on page 542. Perform a...Ch. 15 - Refer to Problem 14.8 on page 542. Perform a...Ch. 15 - Prob. 21PSCh. 15 - Prob. 22PSCh. 15 - Prob. 23PSCh. 15 - You need to develop a model to predict the asking...Ch. 15 - Accounting Today identified top public accounting...Ch. 15 - How can you evaluate whether collinearity exists...Ch. 15 - Prob. 27PSCh. 15 - Prob. 28PSCh. 15 - A Specialist in baseball analytics has expanded...Ch. 15 - In the production of printed circuit boards,...Ch. 15 - Hemlock Farms is a community located in the Pocono...Ch. 15 - Prob. 32PSCh. 15 - Prob. 33PSCh. 15 - Prob. 34PSCh. 15 - You are a real estate broker who wants to compare...Ch. 15 - You are a real estate broker who wants to compare...Ch. 15 - Financial analysts engage in business valuation to...Ch. 15 - Prob. 38PSCh. 15 - A molding machine that contains different cavities...Ch. 15 - The file Cites contains a sample of 25 cities in...Ch. 15 - In problem 15.32-15.36 you developed multiple...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Olympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forwardDoes Table 1 represent a linear function? If so, finda linear equation that models the data.arrow_forwardTable 6 shows the population, in thousands, of harbor seals in the Wadden Sea over the years 1997 to 2012. a. Let x represent time in years starting with x=0 for the year 1997. Let y represent the number of seals in thousands. Use logistic regression to fit a model to these data. b. Use the model to predict the seal population for the year 2020. c. To the nearest whole number, what is the limiting value of this model?arrow_forward
- Table 2 shows a recent graduate’s credit card balance each month after graduation. a. Use exponential regression to fit a model to these data. b. If spending continues at this rate, what will the graduate’s credit card debt be one year after graduating?arrow_forwardCh 13. 7: Refer to the Lincolnville School District bus data. First, add a variable to change the type of engine (diesel or gasoline) to a qualitative variable. If the engine type is diesel, then set the qualitative variable to 0. If the engine type is gasoline, then set the qualitative variable to 1. Develop a regression equation using statistical software with maintenance cost as the dependent variable and age, odometer miles, miles since last maintenance, and engine type as the independent variables.arrow_forward13) Use computer software to find the multiple regression equation. Can the equation be used for prediction? An anti-smoking group used data in the table to relate the carbon monoxide( CO) of various brands of cigarettes to their tar and nicotine (NIC) content. 13). CO TAR NIC 15 1.2 16 15 1.2 16 17 1.0 16 6. 0.8 1 0.1 1 8. 0.8 8. 10 0.8 10 17 1.0 16 15 1.2 15 11 0.7 9. 18 1.4 18 16 1.0 15 10 0.8 9. 0.5 18 1.1 16 A) CO = 1.37 + 5.50TAR – 1.38NIC; Yes, because the P-value is high. B) CÓ = 1.37 - 5.53TAR + 1.33NIC; Yes, because the R2 is high. C) CO = 1.25 + 1.55TAR – 5.79NIC; Yes, because the P-value is too low. D) CO = 1.3 + 5.5TAR - 1.3NIC; Yes, because the adjusted R2 is high. %3Darrow_forward
- If a scatterplot is created in excel, and a line of regression is fit along with a derived functional form, what does it mean to describe and interpret them? What conclusions would be made about relationships between two recorded variables?arrow_forwardA linear relationship between EmployeeSalary (Dependent) and degree(independent) has the following equation : Salary = 400+0.2 (Degree). SST= 736, SSR= 385. Calculate and interpret the coefficient of determination (r2) : Select one: O a. 0.48 , 47.69 percent of the variability in employee salary can be explained by the simple linear regression equation Ob. 0.52,52.31 percent of the variability in employee salary can be explained by the simple linear regression equation Oc. 0.48, 47.69 percent of the variability in the degree earned can be explained by the simple linear regression equation F Od. 0.52, 52.31 percent of the variability in the degree earned can be explained by the simple linear regression equation Next page JUN 2 12 étv W Ps Lrarrow_forwardA linear relationship between EmployeeSalary (Dependent) and degree(independent) has the following equation : Salary = 400+0.2 (Degree). SST= 736, SSR= 385. Calculate and interpret the coefficient of determination (r2) : Select one: O a. 0.48 , 47.69 percent of the variability in employee salary can be explained by the simple linear regression equation Ob. 0.52,52.31 percent of the variability in employee salary can be explained by the simple linear regression equation Oc. 0.48, 47.69 percent of the variability in the degree earned can be explained by the simple linear regression equation Od. 0.52, 52.31 percent of the variability in the degree earned can be explained by the simple linear regression equation F Next page JUN 2 12 étv T Ps Lrarrow_forward
- A researcher wants to investigate the influence of the average no. of nights spent per year by the tourists from Japan on the average amount spent by them. Table 3 shows the related data obtained from the Department of Statistics Malaysia website. Table 4 shows a portion of Microsoft Excel output for the regression analysis performed based on the data in Table 3. Table 3: Data on the nights spent by tourists from Japan and amount spent Year Average no. of nights spent Average amount spent (in RM billion) 2010 5.9 1.1 2011 6.1 1.1 2012 6.1 1.4 2013 6.3 1.5 2014 6.4 1.8 2015 6.1 1.6 2016 6.2 1.3 2017 6.3 1.2 2018 6.6 1.7 2019 6.9 2.3 Table 4: Regression analysis Coefficients Standard Error t Stat P-value Intercept B0 1.4555 -3.7583 0.0056 Average no. of nights spent B1 0.2312 4.7934 0.0014 a. Note that the value of B0 and B1 are missing from Table 4.…arrow_forwardSuppose a study wants to predict the market price of a certain species of turtle (Y) based on the following independent variables indicated in the table. Based from the table, what is the equation of the multiple linear regression? (Round off up to two decimal places. Market Price = 0.07 - 0.40*weight + 1.51*length + 1.41*width + 0.80*age Market Price = - 0.40*weight + 1.51*length + 1.41*width + 0.80*age Market Price = 0.07 + 0.40*weight + 1.51*length + 1.41*width + 0.80*age Market Price = 0.07 - 0.40 + weight + 1.51 + length + 1.41 + width + 0.80 + agearrow_forwardThe manager of the purchasing department of a large saving and loan organization would like to develop a model to predict the amount of time (measured in hours) it takes to record a loan application. Data are collected from a sample of 30 days, and the number of applications recorded and completion time in hours is recorded. Attached below is the regression output. What is the value of the measured t-test statistic to test whether the amount of time depends linearly on the number of loan applications recorded? Question content area bottom Part 1 A. 15.2388 B. 3.2559 C. 232.2200 D. 0.8924arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY