(a)
The appropriate analysis model for the system when the balloon remains stationary.
(a)
Answer to Problem 58P
A particle in equilibrium model is the appropriate analysis model for the system when the balloon remains stationary.
Explanation of Solution
An analysis model is a simplified version of any physical system that strips away the unnecessary aspects of the situation. There are different kinds of analysis models such the particle under constant velocity, particle under constant acceleration and particle in equilibrium etc.
In the given situation, the balloon remains stationary which implies the balloon has zero acceleration. The net force on the balloon in any direction is zero. The balloon is in equilibrium. The particle in equilibrium is the appropriate analysis model for the given physical situation.
Conclusion:
Thus, a particle in equilibrium model is the appropriate analysis model for the system when the balloon remains stationary.
(b)
The force equation for the balloon.
(b)
Answer to Problem 58P
The force equation for the balloon is
Explanation of Solution
Write the equation for equilibrium.
Here,
Take the upward direction to be
Write the equation for
Here,
Put the above equation in equation (I).
Conclusion:
Therefore, the force equation for the balloon is
(c)
The expression for the mass of the segment of string.
(c)
Answer to Problem 58P
The expression for the mass of the segment of string is
Explanation of Solution
Write the equation for the buoyant force.
Here,
Write the equation for the weight of the helium.
Here,
Write the equation for density of the helium.
Here,
Rewrite the above equation for
Put the above equation in equation (IV).
Write the equation for the weight of the balloon.
Here,
Write the equation for the weight of the segment of the string above the ground.
Here,
Put equations (III), (V), (VI) and (VII) in equation (II) and rewrite it for
Write the equation for the volume of the balloon.
Here,
Conclusion:
Put equation (IX) in equation (VIII).
Therefore, the expression for the mass of the segment of string is
(d)
The numerical value of the mass
(d)
Answer to Problem 58P
The numerical value of the mass
Explanation of Solution
Equation (X) can be used to determine the numerical value of the mass
Conclusion:
The density of air is
Substitute
Therefore, the numerical value of the mass
(e)
The numerical value of the length
(e)
Answer to Problem 58P
The numerical value of the length
Explanation of Solution
Write the equation for the mass
Here,
Rewrite the above equation for
Conclusion:
Substitute
Therefore, the numerical value of the length
Want to see more full solutions like this?
Chapter 15 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- How many cubic meters of helium are required to lift a light balloon with a 400-kg payload to a height of 8 000 m? Take Hc = 0.179 kg/m3. Assume the balloon maintains a constant volume and the density of air decreases with the altitude z according to the expression pair = 0e-z/8 000, where z is in meters and 0 = 1.20 kg/m3 is the density of air at sea level.arrow_forwardHow many cubic meters of helium are required to lift a balloon with a 400-kg payload to a height of 8 000 m? Take He = 0.179 kg/m3. Assume the balloon maintains a constant volume and the density of air decreases with the altitude z according to the expression air = 0ez/8, where z is in meters and 0 = 1.20 kg/m3 is the density of air at sea level.arrow_forwardA spherical submersible 2.00 m in radius, armed with multiple cameras, descends under water in a region of the Atlantic Ocean known for shipwrecks and finds its first shipwreck at a depth of 1.75 103 m. Seawater has density 1.03 103 kg/m3, and the air pressure at the oceans surface is 1.013 105 Pa. a. What is the absolute pressure at the depth of the shipwreck? b. What is the buoyant force on the submersible at the depth of the shipwreck?arrow_forward
- Why is the Earths atmosphere denser near sea level than it is at a high altitude? Be sure to explain why the atmospheres density is not uniform and why the air isnt all in contact with the Earths surface.arrow_forwardA vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of mass m (Fig. P18.40). The piston is not restricted in its motion in any way and is supported by the gas at pressure P below it. Atmospheric pressure is P0. We wish to find the height h in Figure P18.40. (a) What analysis model is appropriate to describe the piston? (b) Write an appropriate force equation for the piston from this analysis model in terms of P, P0, m, A, and g. (c) Suppose n moles of an ideal gas are in the cylinder at a temperature of T. Substitute for P in your answer to part (b) to find the height h of the piston above the bottom of the cylinder. Figure P18.40arrow_forwardA manometer is shown in Figure P15.36. Rank the pressures at the five locations indicated from highest to lowest. Indicate equal pressures, if any. FIGURE P15.36arrow_forward
- A hollow copper (Cu = 8.92 103 kg/m3) spherical shell of mass m = 0.950 kg floats on water with its entire volume below the surface. a. What is the radius of the sphere? b. What is the thickness of the shell wall?arrow_forwardReview. (a) Derive an expression for the buoyant force on a spherical balloon, submerged in water, as a function of the depth h below the surface, the volume Vi of the balloon at the surface, the pressure P0 at the surface, and the density w of the water. Assume the water temperature does not change with depth, (b) Does the bouyant force increase or decrease as the balloon is submerged? (c) At what depth is the buoyant force one-half the surface value?arrow_forwardThe mass of a single hydrogen molecule is approximately 3.32 1027 kg. There are 5.64 1023 hydrogen molecules in a box with square walls of area 49.0 cm2. If the rms speed of the molecules is 2.72 103 m/s, calculate the pressure exerted by the gas.arrow_forward
- One study found that the dives of emperor penguins ranged from 45 m to 265 m below the surface of the ocean. a. Using the density of seawater, what is the range of pressures experienced by the penguins between these two depths? b. At what depth below the surface is the pressure 10 times the normal atmospheric pressure?arrow_forwardA rectangular block of Styrofoam 25.0 cm in length, 15.0 cm in width, and 12.0 cm in height is placed in a large tub of water. Assume the density of Styrofoam is 3.00 102 kg/m3. a. What volume of the block is submerged? b. A copper block is now placed atop the Styrofoam block so that the top of the Styrofoam block is level with the surface of the water. What is the mass of the copper block?arrow_forwardA cylinder with a piston holds 0.50 m3 of oxygen at an absolute pressure of 4.0 atm. The piston is pulled outward, increasing the volume of the gas until the pressure drops to 1.0 atm. If the temperature stays constant, what new volume does the gas occupy? (a) 1.0 m3 (b) 1.5 m3 (c) 2.0 m3 (d) 0.12 m3 (e) 2.5 m3arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning