EBK COLLEGE PHYSICS
3rd Edition
ISBN: 9780321989246
Author: Knight
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 58GP
A spider spins a web with silk threads of density 1300 kg/m3 and diameter 3.0 μm. A typical tension in the radial threads of such a web is 7.0 mN. Suppose a fly hits this web. Which will reach the spider first: the very slight sound of the impact or the disturbance traveling along the radial thread of the web?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Two blocks, A and B (with mass 45 kg and 120 kg, respectively), are connected by a string, as shown in the figure below. The pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the incline is μk = 0.26. Determine the change in the kinetic
energy of block A as it moves from to ①, a distance of 15 m up the incline (and block B drops downward a distance of 15 m) if the system starts from rest.
]
37°
A
©
B
A skateboarder with his board can be modeled as a particle of mass 80.0 kg, located at his center of mass. As shown in the figure below, the skateboarder starts from rest in a crouching position at one lip of a half-pipe (point). On his descent, the skateboarder moves without friction so
that his center of mass moves through one quarter of a circle of radius 6.20 m.
i
(a) Find his speed at the bottom of the half-pipe (point Ⓡ).
m/s
(b) Immediately after passing point Ⓑ, he stands up and raises his arms, lifting his center of mass and essentially "pumping" energy into the system. Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.71 m, reaching point D. As he
passes through point ①, the speed of the skateboarder is 5.37 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy when he stood up at point Ⓑ?
]
(c) How high above point ① does he rise?
m
A 31.0-kg child on a 3.00-m-long swing is released from rest when the ropes of the swing make an angle of 29.0° with the vertical.
(a) Neglecting friction, find the child's speed at the lowest position.
m/s
(b) If the actual speed of the child at the lowest position is 2.40 m/s, what is the mechanical energy lost due to friction?
]
Chapter 15 Solutions
EBK COLLEGE PHYSICS
Ch. 15 - a. In your own words, define what a transverse...Ch. 15 - a. In your own words, define what a longitudinal...Ch. 15 - Is it ever possible for one sound wave in air to...Ch. 15 - A wave pulse travels along a string at a speed of...Ch. 15 - Harbor seals, like many animals, determine the...Ch. 15 - A thermostat on the wall of your house keeps track...Ch. 15 - When water freezes, the density decreases and the...Ch. 15 - Figure Q15.9 Q shows a history graph of the motion...Ch. 15 - Figure Q15.10 Q shows a history graph and a...Ch. 15 - Prob. 11CQ
Ch. 15 - Bottlenose dolphins use echolocation pulses with a...Ch. 15 - Some bat species have auditory systems that work...Ch. 15 - Prob. 14CQCh. 15 - When you want to snap a towel, the best way to...Ch. 15 - The volume control on a stereo is designed so that...Ch. 15 - A bullet can travel at a speed of over 1000 m/s....Ch. 15 - Prob. 19CQCh. 15 - Denver, Colorado, has an oldies station that calls...Ch. 15 - What is the frequency of blue light with a...Ch. 15 - Ultrasound can be used to deliver energy to...Ch. 15 - A sinusoidal wave traveling on a string has a...Ch. 15 - Two strings of different linear density are joined...Ch. 15 - You stand at x = 0 m, listening to a sound that is...Ch. 15 - The wave speed on a string under tension is 200...Ch. 15 - The wave speed on a string is 150 m/s when the...Ch. 15 - The back wall of an auditorium is 26.0 m from the...Ch. 15 - A hammer taps on the end of a 4.00-m-long metal...Ch. 15 - In an early test of sound propagation through the...Ch. 15 - Prob. 6PCh. 15 - An earthquake 45 km from a city produces P and S...Ch. 15 - A stationary boat in the ocean is experiencing...Ch. 15 - Figure P15.9 Q is a snapshot graph of a wave at t...Ch. 15 - Figure P15.10Q is a snapshot graph of a wave at t...Ch. 15 - Figure P15.11 is a history graph at x = 0 m of a...Ch. 15 - A sinusoidal wave has period 0.20 s and wavelength...Ch. 15 - A sinusoidal wave travels with speed 200 m/s. Its...Ch. 15 - The motion detector used in a physics lab sends...Ch. 15 - The displacement of a wave traveling in the...Ch. 15 - A traveling wave has displacement given by y(x, t)...Ch. 15 - Figure P15.18 is a snapshot graph of a wave at t =...Ch. 15 - Figure P15.19 is a history graph at x = 0 m of a...Ch. 15 - A boat is traveling at 4.0 m/s in the same...Ch. 15 - In the deep ocean, a water wave with wavelength 95...Ch. 15 - People with very good pitch discrimination can...Ch. 15 - A dolphin emits ultrasound at 100 kHz and uses the...Ch. 15 - a. What is the wavelength of a 2.0 MHz ultrasound...Ch. 15 - Prob. 25PCh. 15 - Prob. 26PCh. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - Sound is detected when a sound wave causes the...Ch. 15 - At a rock concert, the sound intensity 1.0 m in...Ch. 15 - Prob. 31PCh. 15 - Prob. 32PCh. 15 - A large solar panel on a spacecraft in Earth orbit...Ch. 15 - Prob. 34PCh. 15 - LASIK eye surgery uses pulses of laser light to...Ch. 15 - At noon on a sunny day, the intensity of sunlight...Ch. 15 - Prob. 37PCh. 15 - What is the sound intensity level of a sound with...Ch. 15 - What is the sound intensity of a whisper at a...Ch. 15 - You hear a sound at 65 dB. What is the sound...Ch. 15 - The sound intensity from a jack hammer breaking...Ch. 15 - A concert loudspeaker suspended high off the...Ch. 15 - A rock band playing an outdoor concert produces...Ch. 15 - Your ears are sensitive to differences in pitch,...Ch. 15 - 30 seconds of exposure to 115 dB sound can damage...Ch. 15 - A woman wearing an in-ear hearing aid listens to a...Ch. 15 - An opera singer in a convertible sings a note at...Ch. 15 - An ospreys call is a distinct whistle at 2200 Hz....Ch. 15 - A whistle you use to call your hunting dog has a...Ch. 15 - An echocardiogram uses 4.4 MHz ultrasound to...Ch. 15 - Prob. 51PCh. 15 - While anchored in the middle of a lake, you count...Ch. 15 - A Doppler blood flow unit emits ultrasound at 5.0...Ch. 15 - A train whistle is heard at 300 Hz as the train...Ch. 15 - Oil explorers set off explosives to make loud...Ch. 15 - A 2.0-m-long string is under 20 N of tension. A...Ch. 15 - A female orb spider has a mass of 0.50 g. She is...Ch. 15 - A spider spins a web with silk threads of density...Ch. 15 - In 2003, an earthquake in Japan generated 1.1 Hz...Ch. 15 - Prob. 60GPCh. 15 - An earthquake produces longitudinal P waves that...Ch. 15 - Figure P15.62 Q shows two snapshot graphs taken 10...Ch. 15 - Low-frequency vertical oscillations are one...Ch. 15 - A wave on a string is described by y(x, t) = (3.0...Ch. 15 - Write the y-equation for a wave traveling in the...Ch. 15 - Write the y-equation for a wave traveling in the...Ch. 15 - A wave is described by the expression y(x, t) =...Ch. 15 - A point on a string undergoes simple harmonic...Ch. 15 - a. A typical 100 W lightbulb produces 4.0 W of...Ch. 15 - Prob. 70GPCh. 15 - A dark blue cylindrical bottle is 22 cm high and...Ch. 15 - Assume that the opening of the ear canal has a...Ch. 15 - The sound intensity 50 m from a wailing tornado...Ch. 15 - One of the loudest sound generators ever created...Ch. 15 - A harvest mouse can detect sounds below the...Ch. 15 - Prob. 76GPCh. 15 - A physics professor demonstrates the Doppler...Ch. 15 - When the heart pumps blood into the aorta, the...Ch. 15 - Although we cant hear them, the ultrasonic pulses...Ch. 15 - Bats are sensitive to very small changes in...Ch. 15 - Some bats have specially shaped noses that focus...Ch. 15 - Some bats utilize a sound pulse with a rapidly...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Describe the 1H NMR spectrum you would expect for each of the following compounds, indicating the relative posi...
Organic Chemistry (8th Edition)
Modified True/False 3. __________ Aquatic microorganisms are more prevalent near the surface than at the bottom...
Microbiology with Diseases by Body System (5th Edition)
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
WHAT IF? As a cell begins the process of dividing, its chromosomes become shorter, thicker, and individually vi...
Campbell Biology in Focus (2nd Edition)
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
Choose the best answer to each of the following. Explain your reasoning. Suppose you see a crescent moon; how m...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A force acting on a particle moving in the xy plane is given by F = (2yî + x²), where F is in newtons and x and y are in meters. The particle moves from the origin to a final position having coordinates x = 5.60 m and y = 5.60 m, as shown in the figure below. y (m) B (x, y) x (m) (a) Calculate the work done by F on the particle as it moves along the purple path (0 Ⓐ©). ] (b) Calculate the work done by ♬ on the particle as it moves along the red path (0 BC). J (c) Is F conservative or nonconservative? ○ conservative nonconservativearrow_forwardA 3.5-kg block is pushed 2.9 m up a vertical wall with constant speed by a constant force of magnitude F applied at an angle of 0 = 30° with the horizontal, as shown in the figure below. If the coefficient of kinetic friction between block and wall is 0.30, determine the following. (a) the work done by F J (b) the work done by the force of gravity ] (c) the work done by the normal force between block and wall J (d) By how much does the gravitational potential energy increase during the block's motion? ]arrow_forwardPhysics different from a sea breeze from a land breezearrow_forward
- File Preview Design a capacitor for a special purpose. After graduating from medical school you and a friend take a three hour cruise to celebrate and end up stranded on an island. While looking for food, a spider falls on your friend giving them a heart attack. Recalling your physics, you realize you can build a make-shift defibrillator by constructing a capacitor from materials on the boat and charging it using the boat's battery. You know that the capacitor must hold 100 J of energy and be at 1000 V (fortunately this is an electric boat which has batteries that are 1000 V) to work. You decide to construct the capacitor by tightly sandwiching a single layer of Saran wrap between sheets of aluminum foil. You read the Saran wrap box and fortunately they tell you that it has a thickness 0.01 mm and dielectric constant of 2.3. The Saran wrap and foil are 40 cm wide and very long. How long is the final capacitor you build that saves your friend?arrow_forwardHow do I plot the force F in Matlba (of gravity pulling on the masses) versus spring displacement, and fit the data with a linear function to find the value for the spring constant. To get a linear fit, use polynomial order 1. Report the value of 'k' from the fit. What code is used?arrow_forwardOk im confused on this portion of the questions being asked. the first snip is the solution you gave which is correct. BUt now it is asking for this and im confused. The magnitude of the force F_11 is __________LB. The direction of the force F_11 is __________LB.arrow_forward
- Solve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardThe spring in the figure has a spring constant of 1300 N/m. It is compressed 17.0 cm, then launches a 200 g block. The horizontal surface is frictionless, but the block’s coefficient of kinetic friction on the incline is 0.200. What distance d does the block sail through the air?arrow_forwardSolve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY