EBK COLLEGE PHYSICS
3rd Edition
ISBN: 9780321989246
Author: Knight
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 49P
A whistle you use to call your hunting dog has a frequency of 21 kHz, but your dog is ignoring it. You suspect the whistle may not be working, but you can’t hear sounds above 20 kHz. To test it, you ask a friend to blow the whistle, then you hop on your bicycle. In which direction should you ride (toward or away from your friend) and at what minimum speed to know if the whistle is working?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
No chatgpt pls
The position of a coffee cup on a table as referenced by the corner of the room in which it sits is r=0.5mi +1.5mj +2.0mk . How far is the cup from the corner? What is the unit vector pointing from the corner to the cup?
No chatgpt pls
Chapter 15 Solutions
EBK COLLEGE PHYSICS
Ch. 15 - a. In your own words, define what a transverse...Ch. 15 - a. In your own words, define what a longitudinal...Ch. 15 - Is it ever possible for one sound wave in air to...Ch. 15 - A wave pulse travels along a string at a speed of...Ch. 15 - Harbor seals, like many animals, determine the...Ch. 15 - A thermostat on the wall of your house keeps track...Ch. 15 - When water freezes, the density decreases and the...Ch. 15 - Figure Q15.9 Q shows a history graph of the motion...Ch. 15 - Figure Q15.10 Q shows a history graph and a...Ch. 15 - Prob. 11CQ
Ch. 15 - Bottlenose dolphins use echolocation pulses with a...Ch. 15 - Some bat species have auditory systems that work...Ch. 15 - Prob. 14CQCh. 15 - When you want to snap a towel, the best way to...Ch. 15 - The volume control on a stereo is designed so that...Ch. 15 - A bullet can travel at a speed of over 1000 m/s....Ch. 15 - Prob. 19CQCh. 15 - Denver, Colorado, has an oldies station that calls...Ch. 15 - What is the frequency of blue light with a...Ch. 15 - Ultrasound can be used to deliver energy to...Ch. 15 - A sinusoidal wave traveling on a string has a...Ch. 15 - Two strings of different linear density are joined...Ch. 15 - You stand at x = 0 m, listening to a sound that is...Ch. 15 - The wave speed on a string under tension is 200...Ch. 15 - The wave speed on a string is 150 m/s when the...Ch. 15 - The back wall of an auditorium is 26.0 m from the...Ch. 15 - A hammer taps on the end of a 4.00-m-long metal...Ch. 15 - In an early test of sound propagation through the...Ch. 15 - Prob. 6PCh. 15 - An earthquake 45 km from a city produces P and S...Ch. 15 - A stationary boat in the ocean is experiencing...Ch. 15 - Figure P15.9 Q is a snapshot graph of a wave at t...Ch. 15 - Figure P15.10Q is a snapshot graph of a wave at t...Ch. 15 - Figure P15.11 is a history graph at x = 0 m of a...Ch. 15 - A sinusoidal wave has period 0.20 s and wavelength...Ch. 15 - A sinusoidal wave travels with speed 200 m/s. Its...Ch. 15 - The motion detector used in a physics lab sends...Ch. 15 - The displacement of a wave traveling in the...Ch. 15 - A traveling wave has displacement given by y(x, t)...Ch. 15 - Figure P15.18 is a snapshot graph of a wave at t =...Ch. 15 - Figure P15.19 is a history graph at x = 0 m of a...Ch. 15 - A boat is traveling at 4.0 m/s in the same...Ch. 15 - In the deep ocean, a water wave with wavelength 95...Ch. 15 - People with very good pitch discrimination can...Ch. 15 - A dolphin emits ultrasound at 100 kHz and uses the...Ch. 15 - a. What is the wavelength of a 2.0 MHz ultrasound...Ch. 15 - Prob. 25PCh. 15 - Prob. 26PCh. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - Sound is detected when a sound wave causes the...Ch. 15 - At a rock concert, the sound intensity 1.0 m in...Ch. 15 - Prob. 31PCh. 15 - Prob. 32PCh. 15 - A large solar panel on a spacecraft in Earth orbit...Ch. 15 - Prob. 34PCh. 15 - LASIK eye surgery uses pulses of laser light to...Ch. 15 - At noon on a sunny day, the intensity of sunlight...Ch. 15 - Prob. 37PCh. 15 - What is the sound intensity level of a sound with...Ch. 15 - What is the sound intensity of a whisper at a...Ch. 15 - You hear a sound at 65 dB. What is the sound...Ch. 15 - The sound intensity from a jack hammer breaking...Ch. 15 - A concert loudspeaker suspended high off the...Ch. 15 - A rock band playing an outdoor concert produces...Ch. 15 - Your ears are sensitive to differences in pitch,...Ch. 15 - 30 seconds of exposure to 115 dB sound can damage...Ch. 15 - A woman wearing an in-ear hearing aid listens to a...Ch. 15 - An opera singer in a convertible sings a note at...Ch. 15 - An ospreys call is a distinct whistle at 2200 Hz....Ch. 15 - A whistle you use to call your hunting dog has a...Ch. 15 - An echocardiogram uses 4.4 MHz ultrasound to...Ch. 15 - Prob. 51PCh. 15 - While anchored in the middle of a lake, you count...Ch. 15 - A Doppler blood flow unit emits ultrasound at 5.0...Ch. 15 - A train whistle is heard at 300 Hz as the train...Ch. 15 - Oil explorers set off explosives to make loud...Ch. 15 - A 2.0-m-long string is under 20 N of tension. A...Ch. 15 - A female orb spider has a mass of 0.50 g. She is...Ch. 15 - A spider spins a web with silk threads of density...Ch. 15 - In 2003, an earthquake in Japan generated 1.1 Hz...Ch. 15 - Prob. 60GPCh. 15 - An earthquake produces longitudinal P waves that...Ch. 15 - Figure P15.62 Q shows two snapshot graphs taken 10...Ch. 15 - Low-frequency vertical oscillations are one...Ch. 15 - A wave on a string is described by y(x, t) = (3.0...Ch. 15 - Write the y-equation for a wave traveling in the...Ch. 15 - Write the y-equation for a wave traveling in the...Ch. 15 - A wave is described by the expression y(x, t) =...Ch. 15 - A point on a string undergoes simple harmonic...Ch. 15 - a. A typical 100 W lightbulb produces 4.0 W of...Ch. 15 - Prob. 70GPCh. 15 - A dark blue cylindrical bottle is 22 cm high and...Ch. 15 - Assume that the opening of the ear canal has a...Ch. 15 - The sound intensity 50 m from a wailing tornado...Ch. 15 - One of the loudest sound generators ever created...Ch. 15 - A harvest mouse can detect sounds below the...Ch. 15 - Prob. 76GPCh. 15 - A physics professor demonstrates the Doppler...Ch. 15 - When the heart pumps blood into the aorta, the...Ch. 15 - Although we cant hear them, the ultrasonic pulses...Ch. 15 - Bats are sensitive to very small changes in...Ch. 15 - Some bats have specially shaped noses that focus...Ch. 15 - Some bats utilize a sound pulse with a rapidly...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What forms of mercury are most toxic to organisms?
Brock Biology of Microorganisms (15th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
Police Captain Jeffers has suffered a myocardial infarction. a. Explain to his (nonmedically oriented) family w...
Human Physiology: An Integrated Approach (8th Edition)
17. Anthropologists are interested in locating areas in Africa where fossils 4-8 million years old might be fou...
Campbell Biology: Concepts & Connections (9th Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
91. The rotten smell of a decaying animal carcass is partially due to a nitrogen-containing compound called put...
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Find the total capacitance in micro farads of the combination of capacitors shown in the figure below. HF 5.0 µF 3.5 µF №8.0 μLE 1.5 µF Ι 0.75 μF 15 μFarrow_forwardthe answer is not 0.39 or 0.386arrow_forwardFind the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forward
- I do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forwardRank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forwardPart A Find the x-component of the electric field at the origin, point O. Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz = Η ΑΣΦ ? N/C Submit Part B Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O? Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive. ▸ View Available Hint(s) Eoz= Η ΑΣΦ ? N/Carrow_forward
- 1. A charge of -25 μC is distributed uniformly throughout a spherical volume of radius 11.5 cm. Determine the electric field due to this charge at a distance of (a) 2 cm, (b) 4.6 cm, and (c) 25 cm from the center of the sphere. (a) = = (b) E = (c)Ẻ = = NC NC NCarrow_forward1. A long silver rod of radius 3.5 cm has a charge of -3.9 ис on its surface. Here ŕ is a unit vector ст directed perpendicularly away from the axis of the rod as shown in the figure. (a) Find the electric field at a point 5 cm from the center of the rod (an outside point). E = N C (b) Find the electric field at a point 1.8 cm from the center of the rod (an inside point) E=0 Think & Prepare N C 1. Is there a symmetry in the charge distribution? What kind of symmetry? 2. The problem gives the charge per unit length 1. How do you figure out the surface charge density σ from a?arrow_forward1. Determine the electric flux through each surface whose cross-section is shown below. 55 S₂ -29 S5 SA S3 + 9 Enter your answer in terms of q and ε Φ (a) s₁ (b) s₂ = -29 (C) Φ զ Ερ (d) SA = (e) $5 (f) Sa $6 = II ✓ -29 S6 +39arrow_forward
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY