Heating air in the lungs. Human lung capacity varies iron about 4 L to b L, so we shall use an average or 5.0 L. The air enters at the ambient temperature of the atmosphere and must be heated to internal body temperature at an approximately constant pressure of 1.0 aim in our model. Suppose you are outside on a winter day when the temperature is −10°F. (a) How many moles of air does your lung hold if the 5.0 L is at the internal body temperature of 37°C? (b) How much heat must your body have supplied to get the 5.0 L of air up to internal body temperature, assuming that the atmosphere is all N 2 ? (See Table 15.4 .) (c) Suppose instead that you manage to inhale the full 5.0 L of air in one breath and held it in your lungs without expanding (or contracting) them. How much heat would your body have had to supply in that case to raise the air up to internal body temperature?
Heating air in the lungs. Human lung capacity varies iron about 4 L to b L, so we shall use an average or 5.0 L. The air enters at the ambient temperature of the atmosphere and must be heated to internal body temperature at an approximately constant pressure of 1.0 aim in our model. Suppose you are outside on a winter day when the temperature is −10°F. (a) How many moles of air does your lung hold if the 5.0 L is at the internal body temperature of 37°C? (b) How much heat must your body have supplied to get the 5.0 L of air up to internal body temperature, assuming that the atmosphere is all N 2 ? (See Table 15.4 .) (c) Suppose instead that you manage to inhale the full 5.0 L of air in one breath and held it in your lungs without expanding (or contracting) them. How much heat would your body have had to supply in that case to raise the air up to internal body temperature?
Heating air in the lungs. Human lung capacity varies iron about 4 L to b L, so we shall use an average or 5.0 L. The air enters at the ambient temperature of the atmosphere and must be heated to internal body temperature at an approximately constant pressure of 1.0 aim in our model. Suppose you are outside on a winter day when the temperature is −10°F. (a) How many moles of air does your lung hold if the 5.0 L is at the internal body temperature of 37°C? (b) How much heat must your body have supplied to get the 5.0 L of air up to internal body temperature, assuming that the atmosphere is all N2? (See Table 15.4.) (c) Suppose instead that you manage to inhale the full 5.0 L of air in one breath and held it in your lungs without expanding (or contracting) them. How much heat would your body have had to supply in that case to raise the air up to internal body temperature?
On a chilly 10°C day, you quickly take a deep breath—all your lungs can hold, 4.0 L. The air warms to your body temperature of 37°C. If the air starts at a pressure of 1.0 atm, and you hold the volume of your lungs constant (a good approximation) and the number of molecules in your lungs stays constant aswell (also a good approximation), what is the increase in pressure inside your lungs?
Suppose the amount of air in a person's lungs is 1.75 L.
Calculate the number of moles of air molecules in the person’s lungs when the pressure there is atmospheric pressure. Note that the air is at 37.0°C (body temperature).
College Physics: A Strategic Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.